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Overview

e We show that Bayesian model averaging (BMA) can be
problematic under covariate shift in cases when linear
dependencies in the inputs cause lack of posterior contraction.
e The same issue does not affect MAP and several approximate
Bayesian deep learning methods.
e \We propose a new prior that improves the robustness of BNNs.
e These issues could affect virtually any real-world application of
Bayesian model averaging with neural networks.
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Bayesian neural networks
Bayesian inference is especially compelling for deep neural
networks!
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BNNs are not robust to covariate shift
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Generalization to CNNs

Theorem (Informal): Same result applies to convolutional
layers, assuming there is a linear dependence in the dataset of
all k x k patches, where k is the size of the convolutional filter.
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BNNs underperform Deep Ensembles and MAP solutions over a wide range of shifts!

Covariate shift

Target data distribution is different from the distribution used for
training. Perain(T, ¥) = Porain(2)P(Y17)  Prost (7,Y) = Prest(2)p(yl7)

Intuition: MLP on MNIST
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e Weights in the first MLP layer corresponding to dead pixels have
no effect on the likelihood.

e The posterior for these weights is the same as the prior.

e At test time due to noise dead pixels activate; the corresponding
weights sampled from the prior now hurt predictions.
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Theoretical explanation

Theorem (Informal): Suppose we use an i.i.d. Gaussian prior in a Bayesian MLP.

Suppose there exists a constant linear combination in the input features. Then

o There will exist a direction in the parameter space such that the posterior along this
direction coincides with the prior.

e The MAP solution will set this projection to zero.

e The BMA prediction will be susceptible to perturbations breaking the linear
dependence, while the MAP solution will ignore them.

Fix: EmpCov prior
Idea: Reduce prior variance along low-variance directions in data
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o MAP sets these weights to zero and ignores the dead pixels.

Which BDL methods are affected?

e This is a foundational issue with Bayesian model averaging.

e High-fidelity approximate inference, such as HMC, can be
especially affected. VI and SG-MCMC can also be affected.

o MAP, Deep Ensembles, MC-Dropout, SWAG are unaffected.




