What Are Bayesian Neural Network Posteriors Really Like?
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Overview

We run high-fidelity HMC on hundreds of TPU devices for millions of
training epochs to provide our best approximation of true Bayesian neural
networks (BNNs).

o BNNs outperform deep ensembles

No cold posteriors needed for good performance

Deep ensembles more like HMC than mean-field variational inference
BNNs are surprisingly poor under data corruption
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e Parameter-space priors have a limited effect, Gaussians perform well

Bayesian neural networks

Bayesian inference is especially compelling for deep neural
networks!
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Do BNNs perform well in practice?
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Bayesian neural networks achieve strong results outperforming even

large deep ensembles.
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HMC: Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the
log-density function that we are trying to sample from

start at prev. sample  random momentum  simulate dynamics
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+ Asymptotically exact
+ Well-studied and understood
+ Has been used in early BNNs

accept / reject

- Requires exact gradients
- Generally expensive

Do we need cold posteriors?

pr(w|D) < (p(Dlw) - p(w))
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Cold posteriors effect [Wenzel 2020]: cold posteriors (T << 1) are
needed to achieve good performance with BNNs?

CNN-LSTM on IMDB
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Cold posteriors are not required for good results and in fact can hurt!
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In fact, if we disable data augmentation
in the code of [Wenzel 2020], there is no

cold posteriors effect.

Are BNNSs robust to covariate shift?
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HMC BNNs are terrible on corrupted data!
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In [Izmailov 2021] we explain this phenomenon and provide a remedy.

BNN weights SGD weights
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How well is HMC mixing?

Weight Space Function Space
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are close to 1,

10° 10° L indicating good mixing
in function space.
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What'’s the effect of priors?
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Results are fairly robust across A (0, a*I) prior scale a as well as

across prior families. The architecture dominates in prior specification.

How close are other methods to HMC?

All scalable BDL methods
make distinct predictions

g
from HMC. Boo |
5 !
SGMCMC provide the o |
closest results. "
13 |
Deep ensembles are not a o
“non-Bayesian competitor” E ‘

to scalable BDL methods.
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Deep ensembles are closer to HMC than mean-field variational inference!
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