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We propose and study FlowGMM, a new classification model based on nor-
malizing flows that can be naturally applied to semi-supervised learning. The
1dea of FlowGMM 1s to map each data class to a component in the Gaussian
mixture using an invertible transformation. For semi-supervised learning:

e | .abeled data from class 2 1s modeled as transtormation of the 2-th Gaussian

e Unlabeled data 1s modeled as transformation of the mixture
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Figure 1: Illustration of semi-supervised learning with Normalizing flows. Labeled data
1s shown with triangles, colored by the corresponding class label, and blue dots represent
unlabeled data.

FlowGMM

Define a normalizing flow with a class-conditional latent distribution

pr(ely) = p2(F@ly) - |2 pa(ely) = Nzl 5,)

We can evaluate likelihood for unlabeled data as
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Loss. Log-likelihood for labeled D; and unlabeled D,, data 1s
logpx(Dp, Do) = Y logpr(xily:) + Y  logpa(z;).
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Consistency Loss Term. Encourages the model to map small perturbations
of the same unlabeled inputs to the same components of the mixture:

Leons(7', 2") = N (f (") |y, Zyr),
where ' and =" are two perturbations (e.g. random crops) of the same input
x, and y” is the class label predicted for z”.

Classification. Decision rule for a test point x:

__ . _ N(f(aj)‘:ulvzl)
y =arg max px(y =i|r) =arg max 5 .
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Empirical Results

Synthetic Data. Even with a small number of labeled data points,
FlowGMM puts the decision boundary to a low-density region in data-space.
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Figure 2: Bottom: unlabeled (blue dots) and labeled data (colored triangles) and decision
boundary (dashed line). Top: mapping of the data to the latent space.

Image Classifcation. We use a Multiscale RealNVP architecture.

Table 1: Supervised and semi-supervised performance of the proposed model, VAE model
(Kingma et al., 2014) and deep invertible generalized linear model (DIGLM, Nalisnick et
al. 2019).

Method MNIST SVHN CIFAR-10

(n; = 1k, n, = 59k) (n; = 1k,n, = 72k) (n; = 4k, n, = 46k)
DIGLM Sup (n; + n,, labels) 99.33 95.74 -
FlowGMM Sup (n; + n,, labels) 99.63 95.81 88.44
M1+M2 VAE SSL (n; labels) 97.60 63.98
DIGLM SSL (n; labels) 97.79 - -
FlowGMM Sup (n; labels) 97.36 78.26 73.13
FlowGMM (n; labels) 98.94 82.42 78.24
FlowGMM-cons (n; labels) 99.0 86.44 80.9

Uncertainty. FlowGMM produces overconfident predictions on in-domain
data; this problem can be remedied by scaling the variance of mixture com-
ponents after the training 1s finished.

Table 2: Uncertainty calibration for FlowGMM trained on MNIST (1000 labeled objects)
and CIFAR-10 in the supervised setting.

MNIST (test acc 97.3%) CIFAR-10 (test acc 89.3%)
FlowGMM FlowGMM w Temp FlowGMM FlowGMM w Temp

NLL  0.295 0.094 2.98 0.444
ECE  0.024 0.004 0.108 0.038

Out-of-Domain Detection. We use the likelihood py(x) of FlowGMM to
identify out-of-domain data.
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Figure 3: Left: Log-likelihoods on in- and out-of-domain data for our model trained on
MNIST and Right: FashionMNIST.

e FlowGMM trained on MNIST can identify notMNIST and FashionMNIST
data as out-of-domain

e On the other hand, MNIST examples are assigned higher likelihoods by
our model trained on FashionMNIST than the training data itselt

Latent Representation. FlowGMM naturally encodes the clustering prin-
ciple: the decision boundary between classes must lie in the low-density
region.
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Figure 4: (a): Images corresponding to means of the Gaussians for each class. (b): Class-
conditional samples from the model at a reduced temperature 7' = 0.25. (¢): Latent space
interpolations between test images from the same class and (d): from different classes. (e):
Histogram of distances from unlabeled data to the decision boundary for FlowGMM-cons

trained on 1k labeled and 59% unlabeled data and FlowGMM Sup trained on 1k labeled data
only.

e FlowGMM learns a reasonable generative model

e Interpolations between data points from different classes pass through low-
density regions

e FlowGMM pushes the decision boundary away from unlabeled data



