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Abstract
We propose a new approach for joint modelling
of the labels and data of complex distributions
using normalizing flows, Flow Gaussian Mix-
ture Model (FlowGMM). FlowGMM models the
data as a mixture of complex distributions, im-
plemented by an invertible transformation of a
Gaussian mixture. This hybrid approach is par-
ticularly well suited for semi-supervised learn-
ing, where FlowGMM learns to push the de-
cision boundary towards a low-density region
of the data space. We evaluate the proposed
model on a range of semi-supervised image clas-
sification problems: MNIST, SVHN, CIFAR-10
datasets. Following semi-supervised learning lit-
erature, we propose a modified consistency regu-
larization term for our model which substantially
improves performance.

1. Introduction
In many domains unlabeled data is plentiful, while labeled
data may be scarce. Semi-supervised learning framework
leverages both labeled and unlabeled data reducing the
need for expensive manual annotation. Consistency-based
methods have shown outstanding performance in semi-
supervised image classification (Laine and Aila, 2016;
Miyato et al., 2018b; Tarvainen and Valpola, 2017; Athi-
waratkun et al., 2019; Verma et al., 2019; Berthelot et al.,
2019) and are currently state of the art on challenging
datasets like CIFAR-10, CIFAR-100, and Imagenet. How-
ever, these methods have not seen much application on do-
mains other than images, where a suitable set of data per-
turbations to which we want the classifier to be invariant
are not known a priori.

Generative models provide a more generally applicable ap-
proach to semi-supervised learning. In the work of Kingma
et al. (2014), it was shown how the likelihood model
of Variational Autoencoder (Kingma and Welling, 2013)
could be used for semi-supervised image classification on
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datasets like MNIST and SVHN. Xu et al. (2017) later ex-
tended this framework to semi-supervised text classifica-
tion.

Generative Adversarial Networks (GANs) have shown re-
markable improvement in producing high quality, diverse
image samples (Goodfellow et al., 2014; Karras et al.,
2017; Miyato et al., 2018a; Brock et al., 2018). While
GANs do not have a direct likelihood model, they have
been employed for semi-supervised learning through mul-
titask learning objective where the model learns to simul-
taneously discriminate generated images from real (labeled
and unlabeled) images and classify labeled data (Salimans
et al., 2016). However, the efficacy of the GAN based SSL
methods are not well understood and it has been shown
that a GAN with a perfect generator would yield no ben-
efit for classification (Dai et al., 2017); furthermore, train-
ing GAN-based methods with more powerful discrimina-
tors has proven to be challenging.

Normalizing Flows (NF) (Dinh et al., 2014) present an-
other major class of deep generative models. Unlike GANs
and VAEs, normalizing flows can be trained using exact
maximum likelihood. NFs admit controllable latent rep-
resentations and can be sampled efficiently unlike auto-
regressive models (Papamakarios et al., 2017; Oord et al.,
2016). Recent work (Dinh et al., 2016; Kingma and Dhari-
wal, 2018; Behrmann et al., 2018) demonstrated that nor-
malizing flows can produce high-fidelity samples for natu-
ral image datasets.

In this paper, we propose Flow Gaussian Mixture Model
(FlowGMM), a simple and natural approach to semi-
supervised learning based on normalizing flows. The main
idea of FlowGMM is to map each data class to one compo-
nent in the Gaussian mixture using an invertible transfor-
mation (flow). Specifically, in semi-supervised setting the
labeled data from a given class is modeled as transforma-
tion of the corresponding Gaussian, while unlabeled data is
modeled as a transformation of the mixture of the compo-
nents corresponding to all classes. Due to invertibility, we
can compute exact likelihood of the data using the change
of variable formula. The model can be trained by maximiz-
ing likelihood with respect to the parameters of the flow.

We illustrate FlowGMM on a toy problem in Figure 1. The
data distribution is shown in panel (a), the mapping of the
data to the latent space is shown in panel (b) and the la-
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Figure 1. Illustration of semi-supervised learning with Normalizing flows. Labeled data is shown with triangles, colored by the corre-
sponding class label, and blue dots represent unlabeled data.

tent distribution is shown in panel (c) of Figure 1. Test data
points are classified to belong to the class represented by
the mixture component with the highest density at the cor-
responding latent points. Panel (a) of Figure 1 shows the
decision boundary produced by the classifier.

FlowGMM is based on the clustering principle: the deci-
sion boundary between classes must lie in the low-density
region. Indeed, in the latent space the decision bound-
ary coincides with the perpendicular bisectors of the line
segments connecting means of the mixture components
(assuming the components are standard normal distribu-
tions) and the density of the latent distribution near decision
boundary is low. As the flow is trained to represent data as
a transformation of this latent distribution, the density near
the decision boundary should also be low. In panel (a) of
Figure 1 we can see that the decision boundary indeed lies
in a low-density region.

The contributions of this work are as follows:

• We propose FlowGMM, a new classification model
based on normalizing flows, that can be naturally
applied to semi-supervised learning. We evalu-
ate FlowGMM on a range of consequential semi-
supervised image classification benchmarks.

• We propose modified consistency regularization for
FlowGMM and empirically demonstrate that it sub-
stantially improves performance of the method.

• We conduct a thorough empirical analysis of
FlowGMM for supervised and semi-supervised clas-
sification. In particular, we show that the predictive
uncertainties of the method can be calibrated by scal-
ing the variance of mixture components. We study
the ability of FlowGMM to detect out-of-domain data.
We visualize the learned latent space representations
for the proposed semi-supervised model and show
that interpolations between data points from different
classes pass through low-density regions. Finally, we
show how our classification model can be used for op-
timization free feature visualization.

2. Background: Normalizing Flows
The normalizing flow (Dinh et al., 2016) is an unsupervised
model for density estimation defined as an invertible map-
ping f : X → Z from the data space X to the latent space
Z . We can model the data distribution as a transformation
f−1 : Z → X applied to a random variable from the la-
tent distribution z ∼ pZ often chosen to be Gaussian. The
density of the transformed random variable x = f−1(z) is
given by the change of variables formula

pX (x) = pZ(f(x)) ·
∣∣∣∣∂f∂x

∣∣∣∣ . (1)

The mapping f is implemented as a sequence of invertible
functions, parametrized by a neural network with archi-
tecture that is designed to ensure invertibility and efficient
computation of log-determinants, and a set of parameters θ
that can be optimized. The model can be trained by max-
imizing the likelihood (1) of the training data with respect
to the parameters θ.

3. Method
3.1. Flow Mixture Model

In our model, we add a discrete latent variable y for the
class label, y ∈ {1 . . . C}. Our latent space distribution,
conditioned on a given label k, is Gaussian with mean µk
and covariance Σk:

z|y = k ∼ N (µk,Σk). (2)

The marginal distribution of z is then a Gaussian mixture.
When the classes are balanced, this distribution is

pZ =
1

C

C∑
k=1

N (µk,Σk). (3)

Using our flow f , we sample data points conditionally or
unconditionally with x = f−1(z). Thus, the likelihood for
labeled data is

pX (x|y = k) = N (f(x)|µk,Σk) ·
∣∣∣∣∂f∂x

∣∣∣∣ ,
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Figure 2. Illustration of FlowGMM performance on synthetic datasets. Bottom row shows unlabeled data with blue dots and labeled
data with colored triangles; decision boundary is shown with a dashed line. Top row shows the mapping of the data to the latent space.

and the likelihood for data with unknown label is pX (x) =∑
k pX (x|y = k)p(y = k). If we have access to both a

labeled dataset D` and an unlabeled dataset Du, then we
can train our model in a semi-supervised way to maximize
the joint likelihood of the labeled and unlabeled data

pX (D`,Du) =
∏

(xi,yi)∈D`

pX (xi, yi)
∏

xj∈Du

pX (xj), (4)

over the parameters θ of the bijective function f , which
learns both a classifier and a density model. Given a test
point x, the model predictive distribution is given by

pX (y|x) = pX (x|y)
p(y)

p(x)
=

N (f(x)|µy,Σy)∑C
k=1N (f(x)|µk,Σk)

. (5)

We can then make predictions for a test point x with the
regular decision rule

y = arg max
i∈{1,...,C}

pX (y = i|x).

3.2. Consistency Regularization

Most of the existing state-of-the-art approaches to semi-
supervised learning are based on consistency regulariza-
tion (Laine and Aila, 2016; Miyato et al., 2018b; Tarvainen
and Valpola, 2017; Athiwaratkun et al., 2019; Verma et al.,
2019). These methods penalize change in network predic-
tions with respect to input perturbations such as random
translations and horizontal flips with an additional loss term
that can be computed on unlabeled data,

`cons(x) = ‖g(x′)− g(x′′)‖2, (6)

where x′, x′′ are random perturbations of x, and g is the
vector of probabilities over the classes.

Motivated by these methods, we introduce a simple consis-
tency regularization term for FlowGMM. Let y′′ be the la-
bel predicted on image x′′ by FlowGMM according to (5).
We then define the consistency loss term as the likelihood
of the label y′′ given the input x′

Lcons(x
′, x′′) = N (f(x′)|µy′′ ,Σy′′). (7)

This encourages the model to map small perturbations of
the same unlabeled inputs to the same components of the
mixture distribution, but not necessarily the same point in
contrast to 6. We find that the usual consistency loss de-
grades sample quality, and this is likely because it conflicts
with the models need to preserve intra-class variation like
translations. We refer to FlowGMM with consistency term
(7) as FlowGMM-cons. The final loss for FlowGMM-cons
is then the weighted sum of the consistency loss (7) and the
negative log likelihood of both labeled and unlabeled data
(4).

3.3. Latent Distribution Mean and Covariance Choices

While we can learn both the means µi and covariance ma-
trices Σi with either directly optimizing likelihood (4), or
expectation maximization (see Section B), in practice we
didn’t find it to help. In our experiments, we set the covari-
ance matrices to identity Σi = I for all classes. We draw
mean vectors µi randomly from the standard normal dis-
tribution µi ∼ N (0, I) in the latent Z space and fix them
throughout training.
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Table 1. Supervised and semi-supervised performance of the proposed model, VAE model (M1+M2 VAE, Kingma et al., 2014) deep
invertible generalized linear model (DIGLM, Nalisnick et al., 2019) on MNIST, CIFAR-10 and SVHN. FlowGMM outperforms DIGLM
both on MNIST and SVHN. Further, FlowGMM-cons improves upon FlowGMM on all datasets.

Method MNIST SVHN CIFAR-10
(nl = 1k, nu = 59k) (nl = 1k, nu = 72k) (nl = 4k, nu = 46k)

DIGLM Sup (nl + nu labels) 99.33 95.74 -
FlowGMM Sup (nl + nu labels) 99.63 95.81 88.44

M1+M2 VAE SSL (nl labels) 97.60 63.98 -
DIGLM SSL (nl labels) 97.79 - -
FlowGMM Sup (nl labels) 97.36 78.26 73.13
FlowGMM (nl labels) 98.94 82.42 78.24
FlowGMM-cons (nl labels) 99.0 86.44 80.9

4. Experiments
In this section we present results for FlowGMM on su-
pervised and semi-supervised classification problems. We
present a thorough empirical analysis of the model in Sec-
tion D.

4.1. Synthetic data

We first apply the proposed method to a range of synthetic
datasets. We use RealNVP architecture with 6 coupling
layers, defined by fully-connected shift and scale networks
with 2 hidden layers of size 256 each. The results are
shown in Figure 2. The bottom row of the Figure shows
the data distribution, labeled data points and the decision
boundary. As we can see, even using a small number of
labeled data points, FlowGMM puts the decision boundary
to a low-density region in the data-space X . On the two
circles dataset the method struggles; it is generally hard to
represent this dataset as an invertible mapping of two Gaus-
sians, as they have different topology. FlowGMM still pro-
duces a reasonable decision boundary on this dataset. The
top row of the Figure visualizes the mapping to the latent
space Z learned by the flow.

4.2. Image classification

We next evaluate the proposed method on semi-supervised
image classification benchmarks on CIFAR-10, MNIST
and SVHN datasets. For all the datasets, we use the Re-
alNVP (Dinh et al., 2016) architecture. Please refer to Sec-
tion C for details on hyper-parameters.

We present the results for FlowGMM and FlowGMM-cons
in Table 1. We also provide results for DIGLM (Nalisnick
et al., 2019) (which only report semi-supervised perfor-
mance on MNIST and supervised performance on MNIST
and SVHN) and M1+M2 model (Kingma et al., 2014).
FlowGMM outperforms both DIGLM and M1+M2 mod-
els. Further, FlowGMM-cons improves over FlowGMM
on all three datasets, suggesting that consistency regular-
ization is crucial for the proposed model.

We note that the results presented in this section are not

competitive with state-of-the-art methods using GANs or
consistency regularization (see e.g. Athiwaratkun et al.,
2019; Berthelot et al., 2019; Dai et al., 2017); however,
the architecture we employ is much less powerful for clas-
sification than the ConvNet and ResNet architectures that
have been designed for classifcation without the constraint
of invertibility. We believe that invertible architectures
with better inductive biases for classification (possibly like
iResNet (Behrmann et al., 2018)) may help bridge this gap.

EM algorithm Using EM algorithm for optimization
(see Appendix B) in the semi-supervised setting on MNIST
with 1000 labeled images, we obtain 98.97% accuracy
which is comparable to the result for FlowGMM with reg-
ular SGD training. However, in our experiments, we ob-
served that on E-step, hard label assignment happens for
unlabeled points (q(t|x) ≈ 1 for one of the classes) be-
cause of the high dimensionality of the problem (see sec-
tion D.2) which affects the M-step objective and hinders
training. We expect mitigating this problem to result in EM
achieving faster convergence or improved performance.

5. Conclusion
We proposed FlowGMM, a simple and natural model for
semi-supervised learning with normalizing flows. We view
our FlowGMM as a new approach for joint classification
and density modelling that has a distinct set of strengths
and weaknesses compared to other methods. However,
the classification performance is not yet competitive with
the state-of-the-art approaches (Athiwaratkun et al., 2019;
Verma et al., 2019). There are several promising directions
that could further improve the performance of FlowGMM.
Other types of consistency regularization similar to those
proposed in (Miyato et al., 2018b; Verma et al., 2019) could
lead to stronger performance. Furthermore, in all experi-
ments we used the RealNVP (Dinh et al., 2016) architecture
for the flow. Switching to GLOW (Kingma and Dhariwal,
2018) or an architecture that is designed for classification
rather than image generation, such as iResNet (Behrmann
et al., 2018), could lead to even better results.
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A. Related work
In general, Normalizing flows (see section 2) learn to trans-
form a unimodal Gaussian distribution to the complex dis-
tribution in the data space and substantial work has been in-
vested into improving the expressiveness and inductive bi-
ases of this mapping (Dinh et al., 2014; 2016; Kingma and
Dhariwal, 2018; Grathwohl et al., 2018; Behrmann et al.,
2018). Some normalizing flow papers (such as RealNVP
(Dinh et al., 2016)) have used class-conditional sampling,
where the transformation is conditioned on the class label.
To do so, they pass the class label as an input to coupling
layers, conditioning the output of the flow on the class.

The recent work (Dinh et al., 2019) proposed modelling
discrete latent variables by layering modules which fold the
input for improved unsupervised modeling of discontinu-
ities in data, and apply this method on toy datasets. DIGLM
(Nalisnick et al., 2019), most closely related to our work,
trains a classifier on the latent representation of a normal-
izing flow to perform supervised or semi-supervised image
classification. Our approach is principally different, as we
use a mixture of Gaussians in the latent space Z and per-
form classification based on class-conditional likelihoods
(5), rather than having a separate classifier. One of the key
advantages of our approach is the explicit encoding of clus-
tering principle in the method and a more natural proba-
bilistic interpretation.

Atanov et al. (2019) simultaneously and independently pro-
posed a semi-supervised learning method based on normal-
izing flows. Their approach is different in that they focus on
using another class-conditional normalizing flow as the la-
tent space distribution pZ(·|y) while we use simpler Gaus-
sian mixture models.

B. Expectation Maximization
As an alternative to direct optimization of the likelihood
(4), we consider Expectation-Maximization algorithm (EM
algorithm). EM is a popular approach for finding max-
imum likelihood estimates in mixture models. Suppose
X = {xi}ni=1 is the observed dataset, T = {ti}ni=1 are
corresponding unobserved latent variables (often denoting
the component in mixture model) and θ is a vector of model
parameters. EM algorithm consists of the two alternating
steps: on E-step, we compute posterior probabilities of la-
tent variables for each data point q(ti|xi) = P (ti|xi, θ);
and on M-step, we fix q and maximize the expected log
likelihood of the data and latent variables with respect to θ:
Eq logP (X,T |θ) → maxθ . The algorithm can be eas-
ily adapted to the semi-supervised setting where a subset
of data is labelled with {yli}

nl
i=1: then, on E-step we have

hard assignment to the true mixture component q(ti|xi) =
I[ti = yli] for labelled data points.

EM algorithm is applicable in our setting which is fitting

the transformed mixture of Gaussians. We can perform the
exact E-step for unlabeled data in the model since

q(t|x) =
p(x|t, θ)
p(x|θ)

=
N (f(x)|µt,Σt) ·

∣∣∣∂f∂x ∣∣∣∑C
k=1N (f(x)|µk,Σk) ·

∣∣∣∂f∂x ∣∣∣ =

N (f(x)|µt,Σt)∑C
k=1N (f(x)|µk,Σk)

which coincides with the E-step of EM algorithm on Gaus-
sian mixture model. On M-step, the objective has the fol-
lowing form:

nl∑
i=1

log

[
N (fθ(x

l
i)|µyli ,Σyli)

∣∣∣∣∂fθ∂xli

∣∣∣∣]+

nu∑
i=1

Eq(ti|xu
i ,θ)

log

[
N (fθ(x

u
i )|µti ,Σti)

∣∣∣∣ ∂fθ∂xui

∣∣∣∣] .
Since the exact solution is not tractable due to complexity
of the flow model, we perform a stochastic gradient step to
optimize the expected log likelihood with respect to flow
parameters θ.

Note that unlike regular EM algorithm for mixture models,
we have Gaussian mixture parameters {(µk,Σk)}Ck=1 fixed
in our experiments, and on M-step the update of θ induces
the change of zi = fθ(xi) latent space representations.

C. Hyper-parameters
In image classification experiments, we use the CIFAR-
10 multi-scale architecture with 2 scales, each containing
3 coupling layers defined by 8 residual blocks with 64 fea-
ture maps. We use Adam optimizer (Kingma and Ba, 2014)
with learning rate 10−3 for CIFAR-10 and SVHN and 10−4

for MNIST. We train the supervised model for 100 epochs,
and semi-supervised models for 1000 passes through the
labeled data. For the consistency loss term (7), we linearly
increase the weight from 0 to 1 for the first 100 epochs fol-
lowing (Athiwaratkun et al., 2019). We use a batch size of
64 and sample 32 labeled and 32 unlabeled data points in
each mini-batch. For FlowGMM and FlowGMM-cons, we
re-weight the loss on labeled data by λ = 3 (value tuned
on validation (Kingma et al., 2014) on CIFAR-10), as oth-
erwise, we observed that the method underfits the labeled
data. The supervised model is trained using the same loss
(4), where all the data points are labeled (nu = 0). For
FlowGMM and FlowGMM-cons on all the datasets, the
mixture components are taken to be unit variance normal
distributions with means randomly sampled from the stan-
dard normal distribution.
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Table 2. Semi-supervised performance of FlowGMM-cons and VAE M1 + M2 model (Kingma et al., 2014) on MNIST for different
number of labeled data points. For FlowGMM-cons we report mean and std of test accuracy over 3 runs with different random split of
labeled and unlabeled data.

Method nl = 600 nl = 1000 nl = 3000

M1+M2 VAE SSL (nl labels) 97.41± 0.05 97.60± 0.02 97.82± 0.04
FlowGMM-cons (nl labels) 98.1± 0.5 99.05± 0.1 99.3± 0.04

Table 3. Uncertainty calibration for FlowGMM trained on MNIST (1000 objects) and CIFAR-10 in the supervised setting.

MNIST (test acc 97.3%) CIFAR-10 (test acc 89.3%)

FlowGMM FlowGMM w Temp FlowGMM FlowGMM w Temp

NLL 0.295 0.094 2.98 0.444
ECE 0.024 0.004 0.108 0.038

D. Empirical Analysis
D.1. Dependence on the number of labeled data

Following (Oliver et al., 2018), we evaluate FlowGMM-
cons with different number of labeled data. Specifi-
cally, we follow the setup of (Kingma et al., 2014) and
train FlowGMM-cons on MNIST with 600, 1000 and
3000 labeled data points. We present results in Ta-
ble 2. FlowGMM-cons outperforms the M1+M2 model of
(Kingma et al., 2014) in all the considered settings.

D.2. Uncertainty Representation

For many machine learning applications, it is important to
provide well-calibrated predictions. Using FlowGMM for
classification task, we would like

p(y|x) =
N (x|µy,Σy)∑
kN (x|µk,Σk)

to represent the probabilities of belonging to a particu-
lar class. However, we observe in the experiments that
the model performs hard instead of soft label assignment
(p(y|x) = 1 for exactly one class), and the model is over-
confident in its predictions. This occurs due to the high di-
mensionality of the problem and the way Gaussian mixture
parameters are initialized (section 3.3).

We address this problem using temperature scaling (Guo
et al. (2017)) which is a simple and popular method for
uncertainty calibration. We introduce temperature param-
eter T and scale all logits logN (x|µk,Σk)/T , which cor-
responds to increasing Gaussian variances by a factor of
T . We test calibration on two supervised learning tasks on
MNIST dataset with 1000 points (since on the full data set,
the model has very strong performance and makes too few
mistakes for calibration testing) and CIFAR-10 (the models
from section 4.2). For MNIST model, the temperature was

tuned on a validation set of 1000 labels from the train set
and calibration was tested on the full test set. For CIFAR-
10, the test set was split into validation (of size 1000) and
test, the temperature was tuned on validation, and calibra-
tion was tested on the remaining 9000 objects from the test
set. We report negative log likelihood and expected cali-
bration error (see (Guo et al., 2017) for the metric descrip-
tion). The results are presented in Table 3, and we can see
that temperature scaling significantly improves both met-
rics and mitigates overconfidence problem which suggests
that the latent space distances learned by the flow model
are indeed related to the probabilities of belonging to a
class. Since temperature scaling is directly related to vari-
ance parameters of the mixture, we hypothesize that vari-
ances can be learned in a principled way to directly obtain
well-calibrated predictions which we leave as a future work
direction.

D.3. Out-of-domain data detection

Density models have shown promise for being able to de-
tect out-of-domain data, an especially important task for ro-
bust machine learning systems (Nalisnick et al., 2019). Re-
cently, it has been shown that existing flow and autoregres-
sive density models are not as apt at this task as previously
thought, yielding high likelihood on images coming from
other (simpler) distributions. The conclusion put forward
is that datasets like SVHN are encompassed by, or have
roughly the same mean but lower variance, than more com-
plex datasets like CIFAR10 (Nalisnick et al., 2018). We
examine this hypothesis in the context of our flow model
which has a multi-modal latent space distribution unlike
methods considered in (Nalisnick et al., 2018).

Using a fully supervised model trained on MNIST, we eval-
uate the log likelihood for data points coming from the
NotMNIST dataset, consisting of letters instead of digits,
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Figure 3. Left: Log-likelihoods on in- and out-of-domain data for our model trained on MNIST. Center: Log-likelihoods on in- and out-
of-domain data for our model trained on FashionMNIST. Right: MNIST digits get mapped onto the sandal mode of the FashionMNIST
model 75% of the time, often being assigned higher likelihood than elements of the original sandal class. Representative elements are
shown above.
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Figure 4. Visualizations of the latent space representations learned by supervised FlowGMM on MNIST. (a): Images corresponding to
means of the Gaussians corresponding to different classes. (b): Class-conditional samples from the model at a reduced temperature
T = 0.25. (c): Latent space interpolations between test images from the same class and (d): from different classes. We interpolate
between the original images in leftmost and rightmost positions in each of the rows. Observe that interpolations between objects
from different classes pass through low-density regions. (e): Histogram of distances from unlabeled data to the decision boundary for
FlowGMM-cons trained on 1k labeled and 59k unlabeled data and FlowGMM Sup trained on 1k labeled data only. FlowGMM-cons is
able to push the decision boundary away from the data distribution using unlabeled data.

and the FashionMNIST dataset. We then train a supervised
model on the more complex dataset FashionMNIST and
evaluate on MNIST and NotMNIST. The distribution of
the log likelihood log pX (·) = log pZ(f(·)) + log

∣∣∣∂f∂x ∣∣∣ on
these datasets is shown in Figure 3. For the model trained
on MNIST we see that the data from Fashion MNIST and
NotMNIST is asigned lower likelihood, as expected. How-
ever, the model trained on FashionMNIST predicts higher
likelihoods for MNIST images. The majority (≈ 75%) of
the MNIST data points get mapped into the mode of the
FashionMNIST model corresponding to sandals, which is
the class with the largest fraction of pixels that are zero.
Similarly, for the model trained on MNIST the image of all
zeros has very high likelihood and gets mapped to the mode
corresponding to the digit 1 which has the largest fraction
of empty space.

D.4. Learned Latent Representations

We next analyze the latent representations learned by
FlowGMM-cons. We train the model on MNIST with 1k

labeled data, same as in section 4.2. In Figure 4a we show
the images f−1(µi) corresponding to the means of the
Gaussians representing each of the classes. We see that the
flow correctly learns to map the means to samples from the
corresponding classes. Next, in Figure 4b we show class-
conditional samples from the model. To produce a sample
from class i, we first generate z ∼ N (µi, T I), where T
is a temperature parameter that controls trade-off between
sample quality and diversity; we then compute the sam-
ples as f−1(z). We set T = 0.252 to produce samples in
Figure 4b. As we can see, FlowGMM can produce reason-
able class-conditional samples simultaneously with achiev-
ing a high classification accuracy (99.63%) on the MNIST
dataset.

Next, we study interpolations in the latent space for dat-
apoints corresponding to the same class in Figure 4c and
different classes in Figure 4d. More precisely, for a pair
of images x1, x2 we visualize x(t) = f−1(t · f(x1) +
(1 − t) · f(x2)). We observe that, as expected, interpola-
tions between objects from different classes typically pass
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Figure 5. Feature visualization for FlowGMM trained on MNIST (left) and CIFAR10 (right). Each panel shows an original set of four
images from the test set, the reconstructions where we have perturbed intermediate level features across spatial locations, and the value
of the perturbation α in red vs the whitened distribution of the channel activations. Notice that the channel visualized on the right
activates on zeroed out pixels to the left of the image mimicking the random crops applied to the training data, since the model is also a
normalizing flow it must preserve information even if not relevant to the classification objective like the random crops.

through low-density regions in the data space, as in many
cases samples corresponding to t ≈ 0.5 are of low fidelity.
At the same time, the interpolations between data from the
same class appear to stay in high-density region. These ob-
servations suggest that, as expected, the model learns to put
the decision boundary in the low-density region of the data
space.

Distance to Decision Boundary To explicitly test this
conclusion, we compute the distribution of distances from
unlabeled data to the decision boundary for FlowGMM-
cons and FlowGMM Sup trained on labeled data only. In
order to compute this distance exactly for an image x, we
find the two closest means µ′, µ′′ to the corresponding la-
tent variable z = f(x), and evaluate the expression

d(x) =

∣∣‖µ′ − f(x)‖2 − ‖µ′′ − f(x)‖2
∣∣

2‖µ′ − µ′′‖
.

We visualize the distributions of the distances for the su-
pervised and semi-supervised method in Figure 4e. While
most of the unlabeled data are far from the decision bound-
ary for both methods, the supervised method puts a sub-
stantially larger fraction of data close to the decision
boundary. For example, the distance to the decision bound-
ary is smaller than 5 for 1089 unlabeled data points with su-
pervised model, but only 143 data points with FlowGMM-
cons. The increased separation from the decision bound-
ary for the unlabeled data suggests that FlowGMM-cons
indeed pushes the decision boundary away from the data
distribution in agreement with the clustering principle.

D.5. Feature Visualization

Feature visualization has become an important tool for in-
creasing the interpretability of neural networks. The ma-
jority of methods rely on maximizing the activations of a
given neuron, channel, or layer over a parametrization of
an input image with different kinds of image regulariza-
tion, Szegedy et al. (2013); Olah et al. (2017). Mahendran
and Vedaldi (2015) explore elements in the inverse set of a

given set of intermediate features by optimizing over the re-
construction error with a Total Variation regularizer. These
methods, while effective, are sensitive to optimization and
regularization hyper-parameters and iterative optimization
is impractical for real time interactive exploration.

Since our classification model uses a flow which is a se-
quence of invertible transformations f(x) = f:L(x) :=
fL ◦ fL−1 ◦ . . . f1(x), intermediate activations can be in-
verted directly. This means that we can combine the meth-
ods of feature inversion and feature maximization directly
by feeding in a set of input images, modifying interme-
diate activations arbitrarily, and inverting the representa-
tion. Given a set of activations in the `th layer a`[c, i, j] =
f:`(x)cij layer with channels c and spatial extent i, j, we
may perturb a single neuron with

x(α) = f−1:` (f:`(x) + ασcδcij), (8)

where δcij is a one hot vector at channel c and spatial po-
sition i, j; and σc is the standard deviation of the activa-
tions in channel c over the the training set and spatial lo-
cations. Or we can activate a Gaussian centered on i, j:
δcij → δcGij , or an entire channel with δcij → δc. This
can be performed at real time rates to explore the activa-
tion parametrized by α and the location cij without any
optimization or hyper-parameters. The feature visualiza-
tion of intermediate layers on test images from MNIST and
CIFAR10 are shown in appendix Figure 5.


