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Abstract
Recently, substantial work has been invested into
developing neural network architectures that are
invertible. In this work we relax some of the re-
strictions of past work and show how convolu-
tional layers can be used directly. We show that
standard convolutional layers of a neural network
can be inverted exactly using the Fourier trans-
form and we provide a method for computing
tractable log determinants of this transformation
using only matrix routines over real numbers.
With the addition of bijective activation functions
and downsampling, ordinary (non-residual) con-
volutional networks can be made invertible with
minimal degradation of performance for the orig-
inal classification task. We then apply these tech-
niques to define a simple normalizing flow.

1. Introduction
Convolutional neural networks (ConvNets)(LeCun et al.,
1990) have proved incredibly effective for problems with
translational structure and spatial locality. It has recently
been shown that networks can be designed that are invert-
ible and yet can still be trained to be successful at discrim-
inative tasks. These networks hold promise for more direct
feature visualization, low memory training, and designing
expressive normalizing flows.

We propose new building blocks for invertible neural net-
works that maintain the strong inductive biases that Con-
vNets possess for discriminative tasks. Specifically, we
show how non-residual ConvNets can be converted into
crude normalizing flow models with minimal modification.
Because the procedure can be applied to highly performant
existing CNN architectures, we can hope to design invert-
ible neural networks useful for both generative and dis-
criminative modelling. We show that our changes, required
for invertibility, do not substantially impact discriminative
capability (classification accuracy). Furthermore we show
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that with these adjustments, the direct convolutional net-
work shows promise for normalizing flows and generative
modelling.

2. Related work
Normalizing Flows Dinh et al. (2016) proposed Real-
NVP, which uses a restricted set of non-volume preserv-
ing, but invertible transformations; an additional innovation
was the usage of a multi-scale architecture to allow sepa-
rating out information from different layers of the flow, in-
corporating checkerboard downsampling layers. Kingma
& Dhariwal (2018) proposed Glow, which generalizes the
channel permutation in RealNVP with 1 × 1 convolutions
and scale up the flow to larger problems.

Autoregressive Flows Autoregressive flows (Kingma
et al., 2016) utilize auto-regressive neural networks and a
stacked composition of Gaussian sampling operations to
produce invertible transformations for variational inference
(and autoencoders), while Papamakarios et al. (2017) gen-
eralize the idea of using autoregressive networks to maxi-
mum likelihood density estimation.

Invertible Neural Networks Complementary to normal-
izing flows, there has been some work done designing more
flexible invertible networks. Gomez et al. (2017) proposed
reversible residual networks (RevNet) to limit the memory
overhead of backpropagation, while Jacobsen et al. (2018)
built modifications to allow an explicit form of the inverse,
also studying the ill-conditioning of the local inverse. In
FFJORD, Grathwohl et al. (2018) use a continuous version
of neural network dynamics to create reversible generative
models and flexible transformations, but at a high computa-
tional cost. Behrmann et al. (2018) explore a discretization
of FFJORD requiring only a fixed computational budget
by utilizing fixed point iteration to compute inverses and a
Taylor expansion to compute the log determinant for spec-
trally constrained residual networks.

After this work was first submitted, an independent work
(Hoogeboom et al., 2019) on using 3x3 convolutions in
Glow-style normalizing flows was brought to our attention.
Hoogeboom et al. (2019) use a similar approach to invert-
ing the 3x3 convolutional layers, but they do not use it to
construct invertible CNNs, which is the main focus of our
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paper.

3. Method
3.1. Warmup: Inverses and Logdets for Fully

Connected Layers

As a motivating example, consider a standard fully con-
nected neural network defined recursively

h(i+1) = f (i)(h(i)) = σ(W (i)h(i) + b(i))

with h(1) = x ∈ Rd and the network outputs y = h(L) =
f(x). If the weight matrices are square and randomly ini-
tialized with uniform or normally distributed entries (or
with scaling as in the Xavier and Glorot initializations), it
is well known that these matrices will be invertible with
probability 1. The determinant of each matrix is a poly-
nomial of its entries, and so zero set of a polynomial has
measure 0 (Caron & Traynor, 2005). This implies that, at
least at initialization, fully connected linear layers can be
inverted directly. This fact has been made use of in Kingma
& Dhariwal (2018) in the form of 1× 1 convolutions.

Log determinants of this network, useful for normalizing
flows, can be decomposed into the sum over the individual
log determinants of the Jacobian for each layer. These log
determinants can be split into the sum of the log determi-
nants of the weight matrices, computable in O(d3) time,
and the activations computable in O(d) time:

log|detDf| =
L∑

i=1

log|detDfi|

=

L∑
i=1

(
log|detW (i)|+

d∑
j=1

log σ′(a
(i)
j )
)
.

(1)

3.2. Analytic Inverse of Convolutional Layers

Convolutional (Conv) layers in neural networks usually re-
fer to multi-channel discrete cross correlation, a linear op-
eration. We show that if the convolution has the same num-
ber of input an output channels, it can be inverted directly
without relying on complex and input dependent iterative
methods like GMRES.

The main advance is to directly use the convolution the-
orem, where individual channel cross correlations can be
expressed as element-wise multiplication in the Fourier do-
main. Suppose we have an input x of size c × h × w and
a convolutional weight matrix of size c × c × r × r where
the r is the receptive field size, typically 3, and we take
indices i, j, k = 1, 2, ..., c to index along the channel di-
mension. The ith channel of the convolutional layer output
can be written as

ConvW (x)i =
∑
j

Wij?xj =
∑
j

F−1
(
F(Wij)

∗◦F(xj)
)
,

Type
equation
here.
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Figure 1. Inversion of convolution operation in the Fourier do-
main. The overall chw × chw linear operation performed by
(Xj)

c
j=1 →

(∑
j

(
(F(W )∗)ij ◦ Xj

))
c
i=1 is block diagonal,

with h,w many blocks of size c× c. To invert this block diagonal
matrix, we simply need to invert each of the blocks.

where ? is the (circular) cross correlation operator, F de-
notes a Fourier transformation over the two spatial dimen-
sions, ∗ is complex conjugate, ◦ is an elementwise product
over the elements in an image, and W is interpreted as be-
ing padded with zeros so as to match the spatial dimension
of x. This representation has been made use of in a number
of papers (Vasilache et al., 2014; Rippel et al., 2015) for
speeding up the operation when the filter size, k, is large.
In the Fourier representation, the operation is diagonal over
the spatial axes and altogether expressed as a matrix is a
block diagonal matrix.

This means that in Fourier domain, the inverse can be ex-
pressed simply as the inverse of the channel blocks,

Conv−1W (y)k =
∑
i

F−1
((
F(W )∗

)−1
ki
◦ F(yi)

)
,

when circular padding (rather than zero padding) is used.
Here

(
F(W )∗

)−1
denotes the h×w inverses of the c×c×

h × w tensor along the channel dimensions. This relation-
ship is shown schematically in Figure 1.

Exploiting this representation reduces an (intractable)
naive O(h3w3c3) computation time to O(c2hw log(hw) +
c3hw)). Another benefit is that only a single inversion
needs to be performed and then many images can be sam-
pled using Fourier transforms and standard Conv layers.

3.3. Differentiable Log Dets for Convolutional Layers

The existence of the inverse and its conditioning depend on
the singular values of the convolution operation. Making
use of the work by Sedghi et al. (2018), we can compute the
singular values, and log determinants of convolutional lay-
ers differentiably in an efficient manner using the Fourier
domain. The c × h × w singular values are just the con-
catenation of the c singular values of F(W ):,:,m,n for each
m = 1, ..., h and n = 1, ..., w, and this holds exactly for
convolutional layers with circular padding (Sedghi et al.,
2018; Bibi et al., 2019).
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Figure 2. Runtime of Conv operations for bs, c, h, w = 32× 64× 8× 8 sized image with a 3× 3 filter as the number of channels d = c
and the spatial size h,w = m,m is varied. Log det and ConvW (·) operations are accelerated on an Nvidia 1080ti, and the Conv−1

W (·)
is computed on the CPU.

Since the discrete Fourier transform is a (linear) polyno-
mial in the elements, the determinant of the convolutional
layer is a polynomial in the entries of W and therefore its
zero set has measure zero. This implies that Gaussian (or
Uniform) sampled c×c×r×r parameter tensors will yield
invertible convolutional layers with probability 1.

The log determinant decomposes into the sum over spatial
locations,

log|det(ConvW )| =
∑
h,w

log |det(F(W )∗:,:,h,w)|.

Since many deep learning frameworks1 only support real
valued arithmetic, we instead embed the complex valued
matrices (F(W )∗:,:,h,w) into a higher dimensional real val-
ued space, perform the computations there, and transform
back. We can lift a complex valued matrix C = A+ iB ∈
Cn×n into the subring of real valued matrices in R2n×2n

with the invertible, structure preserving mapping,

φ(A+ iB) = I ⊗A+ J ⊗B =

(
A −B
B A

)
where⊗ denotes Kronecker product, I is the standard 2×2
identity and J =

(
0 −1
1 0

)
, J2 = −I . Note that the log

determinant in this lifted space satisfies

log|det(C)| = 1

2
log|det(φ(C))|,

(see e.g. Section 2.8 of Prasolov, 2007).

Defining Dh,w = φ(F(W ):,:,h,w), we can use the fact that
log |D| = 1

2 log |DDT |, and then apply standard methods
(e.g. a Cholesky factorization in batch mode) for com-
puting the determinants of real valued symmetric matrices.

1e.g. Pytorch, MXNet, Theano. Our implementation is in Py-
Torch.

The log determinant becomes

log|det(ConvW )| = 1

4

∑
h,w

log |det(Dh,wD
T
h,w)|.

Surprisingly we find that runtimes for computing (Conv)
log determinants and inverses grow quadratically in the
number of channels over the range of d values d =
16, .., 1024 rather than the O(d3) that we would expect
asymptotically, see Figure 2. This suggests perhaps that
memory allocation and the 2d FFT are the bottleneck at
this scale.

4. Additional Components
4.1. Smooth bijective activation function

In order to invert the composition of convolutional lay-
ers and nonlinearities, we need to use bijective nonlinear-
ities.2 While the LeakyReLU nonlinearity (Maas et al.,
2013) is bijective, it is not twice differentiable, so deriva-
tives of Jacobian log determinants are not well defined. We
propose a smooth variation of the LeakyReLU function,
SneakyReLU, defined by

σ(x) =
(
x+ α(

√
1 + x2 − 1)

)
/(1 + α)

α = 1−s
1+s where s is the slope as x → −∞. A visual

comparison to the LeakyReLU function is shown in Figure
5. The function has a closed form inverse

σ−1(y) = (
√
α2 + α2b2 − α4 − b)/(α2 − 1)

2Here we need bijective rather than just injective functions so
that roundoff error and numerical instabilities don’t perturb an in-
termediate activation outside of the range of it’s activation func-
tion. Also for the purposes of performing latent space interpola-
tions, and feature visualization it is useful not to have a restricted
image.

https://pytorch.org
https://pytorch.org
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Figure 3. Invertible nearest neighbor downsampling

where b = (1 + α)y + α. The log determinant also
has a simple form: log σ′(x) = log(1 + α x√

1+x2
) −

log(1 + α). We set the negative slope s to 0.01. Al-
though SneakyReLU closely approximates LeakyReLU
in the positive and negative limits, we find that it still leads
to substantially reduced classification performance, see Ta-
ble 1. We hope to reduce this gap by learning s.

4.2. Improved invertible downsampling layers

We found that the commonly applied checkerboard in-
vertible downsampling layer, (Dinh et al., 2016), sub-
stantially hinders classification performance, see Ta-
ble 1. We propose two alternate invertible downsam-
pling layers, iNN and iAvgPool2d, that more closely
mimic the up and downsampling layers typically used
in the GAN community and for classification. In these
layers, the standard output of a downsampling layer
{NearestNeighbor,AvgPool} passed on as one channel
output and the difference in the upsampling of this output
and the input is passed on in the remaining channels. This
operation is explained in more detail in the appendix A.

4.3. Performance Degradation Path

We evaluate the effect of the proposed changes that are
required to make the network invertible on the CIFAR10
dataset for image classification. For data augmentation, we
use the standard set of random 2 × 2 translations and ran-
dom flips.

Change Accuracy Diff

Base Convnet (Tbl 4) 94.6 -
Zero Padding→ Circular Padding 94.6 0

ReLU→ SneakyReLU 93.0 -1.6
MaxPool2d→ Checkerboard DS 92.0 -1.0

MaxPool2d→ iNN 92.5 -0.5
MaxPool2d→ iAvgPool2d 92.6 -0.4

Table 1: Path to Invertibility (CIFAR10 classification per-
formance)

5. Fully Convolutional Normalizing Flow
Making use of the methods above to compute inverses and
differentiable log determinants for convolutional layers, we
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Figure 4. Latent space interpolations of test CIFAR10 images for
the Convnet normalizing flow model.

construct a normalizing flow mapping the data space to the
normal distribution X → N(0, I). In general during the
training process some of the singular values may converge
arbitrarily close to 0, making the matrices difficult to invert
numerically. However, the training objective of normaliz-
ing flows naturally remedies this potential problem. In a
normalizing flow, the objective is the negative log likeli-
hood NLL(x) = 1

2‖f(x)‖2 − log |detDf | + chw
2 log(2π).

The − log |detDf| term in the loss penalizes small singular
values. The test NLL of the network trained on CIFAR10
is shown in Table 2. While the generated samples of the
model are of low quality, the model admits plausible inter-
polations in the latent space, see Figure 4.

Method BPD

MADE (Germain et al., 2015) 5.67
MAF (Papamakarios et al., 2017) 4.31
RealNVP (Dinh et al., 2014) 3.49
Glow (Kingma & Dhariwal, 2018) 3.35
FFJORD (Grathwohl et al., 2018) 3.40
i-ResNet (Behrmann et al., 2018) 3.45

i-ConvNet 4.61

Table 2: Bits per dimension on CIFAR10.

6. Discussion and Future Work
In this preliminary work, we have introduced several build-
ing blocks for invertible convolutional networks that are
less restrictive than other methods, showing promise for
use in normalizing flows. We hope that these building
blocks can be used to build models for joint classification
and density modelling tasks. We plan on refine our nor-
malizing flow model as well as targeting other applications
of invertible conv layers. These building blocks could be
incorporated into more established flow models like Glow,
as well as for learning Gaussian random fields with convo-
lutional covariance matrices, and perhaps for feature visu-
alization.
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Classification Architecture
3× 32× 32 RGB image
ChannelPadding(3→128)
Conv(128,128), BN, SneakyReLU
Conv(128,128), BN, SneakyReLU
Conv(128,128), BN, SneakyReLU
InvertibleDownsample(NN)
KeepChannels(128)
Conv(128,128), BN, SneakyReLU
Conv(128,128), BN, SneakyReLU
Conv(128,128), BN, SneakyReLU
InvertibleDownsample(NN)
KeepChannels(256)
Conv(256,256), BN, SneakyReLU
Conv(256,256), BN, SneakyReLU
Conv(256,256), BN, SneakyReLU
GlobalAveragePool2d
Linear(256,10)
Softmax

Table 3: Invertible CNN (4M params). The
keepChannels(k) layer throws away all but the first k
channels, this analogous to the multiscale elements for
normalizing flows.

A. iNN and iAvgPool2ddownsampling

In checkerboard downsampling squares of 4 spatial loca-
tions are separated into their own channels, and for the in-
verse this means that the corresponding channels are highly
correlated because of the similar values. We hypothe-
size that this correlation makes it more difficult to syn-
thesize plausible activation maps in the reverse direction.
To get around this difficulty, we propose to separate the
channels of a given downsampling method (such as near-
est neighbors or average pooling) from the difference be-
tween the upsampled downsampled output. For nearest
neighbors, the operation in the downsampling direction
is shown in Figure 3, and the log determinant is 0. For
iAvgPool2d, the output of the first component is replaced
by the average over the 2 × 2 spatial neighborhood, and
log det(iAvgPool2d) = −c× h× w log(

√
2).

B. Normalizing Flows Details
Unlike in the classification architecture, we do not apply
the injective zero padding of channels so as not to change
the dimension of the data. We also found it useful to re-
move batch normalization, as we sometimes found that the
learned channel wise scaling made inversion of the entire
network impossible even when the individual convolutional
layers are invertible.

Flow Architecture
3× 32× 32 RGB image
Sigmoid Dequantization Layer
Conv(3,3), SneakyReLU
Conv(3,3), SneakyReLU
Conv(3,2), SneakyReLU
InvertibleDownsample(NN)
Conv(12,12), SneakyReLU
Conv(12,12), SneakyReLU
Conv(12,12), SneakyReLU
InvertibleDownsample(NN)
Conv(48,48), SneakyReLU
Conv(48,48), SneakyReLU
Conv(48,48), SneakyReLU
InvertibleDownsample(NN)
Conv(192,192), SneakyReLU
Conv(192,192), SneakyReLU
Conv(192,192), SneakyReLU
Conv(192,192)

Table 4: Invertible CNN (1.4M params). The sigmoid de-
quantization layer is identical to that used in Dinh et al.
(2016) which converts the discrete 0− 255 valued distribu-
tion over intensities into continuous valued logits, so that
the inverse transform is squashed by a sigmoid to lie be-
tween 0 and 1.
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Figure 5. Comparison of proposed activation function
SneakyReLU (Smooth Leaky ReLU) to the twice differ-
entiable but not bijective ELU and the bijective but not twice
differentiable LeakyReLU. Notice that SneakyReLU and
LeakyReLU have the same asymptotic behaviour as x→ ±∞.


