Inference within a Subspace

Assume aset of K + 1 vectors {vi, v, .. ., v, W} in the full weight
space, R”; define subspace:

S={wlw=w+z1vi + ... zZxvx} = {wlw = w + Pz},
withw € RP, P = (v{, ..., vl) € RP*" andz = (z, ..., zk) €
RX,
New likelihood is a function of z:

p(D|z) = pu(Dlw = w + Pz).

Bayesian model averaging:

Dy — L -
p(D*|D) =+ > pm(D’|

w+ PZ), Z ~ q(z|D),

where q(z|D) is approximate posterior over z, represented by
MCMC samples or a deterministic (variational) approach.

Posterior Tempering.  #parameters << #data points in the
subspace model, hence posterior over z is extremely concen-
trated. Instead, we utilize the tempered posterior:

pr(2|D) x p(D|2)""" p(2)

likelihood prior

Subspace Construction

Intuitively we want the subspace S to (1) contain a diverse (pro-
ducing meaningfully different predictions on test data) set of
models and (2) be cheap to construct.

Random Subspaces
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e Directions v4
e Use a pre-trained solution as shift w

PCA of the SGD Trajectory

VI, PCA Subspace VI, PCA Subspace ES
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e Run SGD with high constant learning rate from a pre-trained so-
lution and collect snapshots w; of weights

o Use SWA solution as shift w = + > w,

o{vi, Vo, ..., v} = first K PCA components of vectors w; — w

Curve Subspaces

e Garipov et al. 2018 proposed a method to find two-dimensional
subspaces containing path of low loss between weights of two
independently trained neural networks
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Challenge: Standard Bayesian inference procedure
struggle with the high dimensional parameter spaces
In modern deep learning.

Approach: Use information from the SGD trajectory
to perform inference in a low dimensional subspace.

Even when using exceptionally low dimensional sub-
spaces, Bayesian inference is possible on large neural
networks with minimal computational overhead.
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Experiments

e Curve Subspace > PCA Subspace > Random Subspace

e PCA subspace generally has the best run-time accuracy trade-
off.

e Despite its simplicity, Subspace Inference in the PCA subspace
Is competitive with many popular alternatives: SWAG, MC-
Dropout and Temperature Scaling on image classification and
UCI regression data.

Negative log-likelihood and Accuracy for PreResNet-164 for
10-dimensional random, 10-dimensional PCA, and 2-dimensional
curve subspaces.

Random PCA Curve

NLL 0.6858 &= 0.0052 0.6652 4= 0.004 0.6464 = 0.01
Accuracy (%) 80.17+0.03 80.54+0.13 81.28+0.26

Random Subspace PCA Subspace Curve Subspace
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Posterior log-density surfaces, ESS samples, and VI approximate
posterior distribution in (a) random, (b) PCA and (c) curve
subspaces for PreResNet-164 on CIFAR-100.
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Test log-likelihoods for proposed methods on six UCI regression
datasets.

Test 95% Pl Coverage

K PCA+ESS (SI) % PCA+VI(S) @ SGD SWAG

Coverage of 95% prediction interval for proposed methods on
UCI regression datasets.
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