Averaging Weights Leads to Wider Optima and Better Generalization

Pavel Izmailov1 \hspace{1cm} Dmitrii Podoprikhin2,3 \hspace{1cm} Timur Garipov4,5
Dmitry Vetrov2,3 \hspace{1cm} Andrew Gordon Wilson1

1Cornell University
2Higher School of Economics
3Samsung-HSE Laboratory
4Samsung AI Center in Moscow
5Lomonosov Moscow State University

Uncertainty in Artificial Intelligence
Monterey, California, USA

August 9, 2018
Optima width is conjectured to be correlated with generalization (Keskar et al. [2017], Hochreiter and Schmidhuber [1997])
Talk Outline

We propose Stochastic Weight Averaging (SWA) — an equally weighted running average of parameters (DNN weights) traversed by SGD with a modified learning (cyclical or high constant) rate schedule.

▶ Improves generalization
▶ No significant computational overhead
▶ Extremely easy to implement and use

Explanation:
▶ Finds wider solutions centered in the set of high-performing networks
▶ Approximates ensembling
SGD Experiment: Constant Learning Rate

Run SGD with constant learning rate and visualize trajectory

» SGD iterates stay at the boundary of a high-quality region
» Averaging iterates improves performance
» Shift between train and test
Explanation: Soap Bubble

Mandt et al. [2017]: SGD with fixed learning rate samples from a Gaussian distribution centered at the minimum of the loss.

SGD iterates concentrate on a surface of an ellipsoid. Averaging lets us go inside the ellipsoid!
What if we use a cyclical learning rate?
SGD Experiment: Cyclical Learning Rate

Observations still hold:

- SGD iterates stay at the boundary of a high-quality region
- Averaging iterates improves performance
- Shift between train and test
Explanation: Ensemble Approximation

- SGD is taking small steps, so averaging weights \approx ensembling by linearization

$$f \left(\frac{1}{n} \sum_{i=1}^{n} w_i \right) \approx \frac{1}{n} \sum_{i=1}^{n} f(w_i)$$

- Empirically, averaging weights and ensembling SGD iterates indeed lead to similar predictions
SWA details

- Use learning rate schedule that doesn’t decay to zero (cyclical or constant)
- Average weights
 - Cyclical LR ⇒ at the end of each cycle
 - Constant LR ⇒ at the end of each epoch
- Recompute Batch Normalization statistics at the end of training; in practice do one additional forward pass on train data
SWA details

- Use learning rate schedule that doesn’t decay to zero (cyclical or constant)
- Average weights
 - Cyclical LR ⇒ at the end of each cycle
 - Constant LR ⇒ at the end of each epoch
- Recompute Batch Normalization statistics at the end of training; in practice do one additional forward pass on train data
SWA vs SGD

Run SGD and SWA from the same initialization (ResNet-164, CIFAR-100)

- SGD achieves better train loss
- SWA achieves better test accuracy
- Large shift between train and test
Connecting SWA and SGD Solutions

\[w(t) = t \cdot w_{\text{SGD}} + (1 - t) \cdot w_{\text{SWA}} \]
Width along random rays

$$w(t) = \{w_{\text{SWA}}, w_{\text{SGD}}\} + t \cdot \frac{d}{\|d\|}, \quad d \sim \mathcal{N}(0, I)$$
Width along random rays

\[w(t) = \{w_{\text{SWA}}, w_{\text{SGD}}\} + t \cdot \frac{d}{\|d\|}, \quad d \sim \mathcal{N}(0, I) \]
SWA Results

<table>
<thead>
<tr>
<th>DNN (Budget)</th>
<th>SGD</th>
<th>SWA 1 Budget</th>
<th>SWA 1.5 Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGG-16 (200)</td>
<td>72.55 ± 0.10</td>
<td>73.91 ± 0.12</td>
<td>74.27 ± 0.25</td>
</tr>
<tr>
<td>ResNet-164 (150)</td>
<td>78.49 ± 0.36</td>
<td>79.77 ± 0.17</td>
<td>80.35 ± 0.16</td>
</tr>
<tr>
<td>WRN-28-10 (200)</td>
<td>80.82 ± 0.23</td>
<td>81.46 ± 0.23</td>
<td>82.15 ± 0.27</td>
</tr>
<tr>
<td>PyramidNet-272 (300)</td>
<td>83.41 ± 0.21</td>
<td>–</td>
<td>84.16 ± 0.15</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGG-16 (200)</td>
<td>93.25 ± 0.16</td>
<td>93.59 ± 0.16</td>
<td>93.64 ± 0.18</td>
</tr>
<tr>
<td>ResNet-164 (150)</td>
<td>95.28 ± 0.10</td>
<td>95.56 ± 0.11</td>
<td>95.83 ± 0.03</td>
</tr>
<tr>
<td>WRN-28-10 (200)</td>
<td>96.18 ± 0.11</td>
<td>96.45 ± 0.11</td>
<td>96.79 ± 0.05</td>
</tr>
<tr>
<td>ShakeShake-2x64d (1800)</td>
<td>96.93 ± 0.10</td>
<td>–</td>
<td>97.12 ± 0.06</td>
</tr>
<tr>
<td>Imagenet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNN</td>
<td>SGD</td>
<td>SWA 5 epochs</td>
<td>SWA 10 epochs</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>76.15</td>
<td>76.83 ± 0.01</td>
<td>76.97 ± 0.05</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>78.31</td>
<td>78.82 ± 0.01</td>
<td>78.94 ± 0.07</td>
</tr>
<tr>
<td>DenseNet-161</td>
<td>77.65</td>
<td>78.26 ± 0.09</td>
<td>78.44 ± 0.06</td>
</tr>
</tbody>
</table>
Applications and Extensions

- Two papers at UDL workshop tomorrow!
 - Improving Stability in Deep Reinforcement Learning with Weight Averaging
 - Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs
- Athiwaratkun et al. [2018]: use a modified version of SWA to get SOTA results in Semi-Supervised Learning
Summary

- SWA is a simple technique that consistently improves generalization with deep neural networks with virtually no computational overhead.
- SWA is very easy to use and implement and proved useful in a range of applications.
- Code is available, so we encourage you to try SWA for yourself!
 - PyTorch: https://github.com/timgaripov/swa
 - Chainer: https://github.com/chainer/models/tree/master/swa
 - fast.ai: https://github.com/fastai/fastai
References

