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Abstract

Deep reinforcement learning (RL) methods are
notoriously unstable during training. In this
paper, we focus on model-free RL algorithms
where we observe that the average reward is
unstable throughout the learning process and
does not increase monotonically given more
training steps. Furthermore, a highly rewarded
policy, once learned, is often forgotten by an
agent, leading to performance deterioration.
These problems are partly caused by funda-
mental presence of noise in gradient estimators
in RL. In order to reduce the effect of noise on
training, we propose to apply stochastic weight
averaging (SWA), a recent method that aver-
ages weights along the optimization trajectory.
We show that SWA stabilizes the model solu-
tions, alleviates the problem of forgetting the
highly rewarded policy during training, and
improves the average rewards on several Atari
and MuJoCo environments.

1 INTRODUCTION

Deep reinforcement learning (RL) methods have made
significant progress over the last several years. How-
ever, the training stability still remains an important is-
sue for deep RL. In Figure 1, we show the cumulative re-
wards as a function of the number of interactions with the
environment for A2C method [Barto et al., 1983, Mnih
et al., 2016] for CartPole environment. As we can see,
while the agent reaches near-optimal average cumulative
reward of approximately 200, the trajectory of average
reward is highly non-monotonic. In particular, the agent
often forgets the highly rewarded policy, and the average
cumulative reward decreases significantly. The depen-
dence of learning data distribution on agent’s decisions
may further exacerbate the consequences of noise.
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Figure 1: An example of A2C reward trajectory on Cart-
Pole environment with and without SWA

Fundamental presence of noise in gradient estimators is
one of the most important reasons for learning curve’s
non-monotonicity and forgetting. This noise may be due
to different factors ranging from stochastic transitions to
delayed rewards and exploratory actions. Methods re-
ducing the impact of such noise (either directly or indi-
rectly), include the following: adding regularization to
objective function [Farahmand et al., 2009]; augment-
ing an objective function with auxiliary losses [Jader-
berg et al., 2016]; constraining gradient updates of policy
parameters [Schulman et al., 2015a, 2017, Bhatia et al.,
2017]; replacing an objective with its more robust coun-
terpart [Gilbert and Weng, 2016]. In contrast to afore-
mentioned approaches, our work investigates stabiliza-
tion benefits unrelated to objective function modification
and gradient update constraints. More specifically, we
propose to apply the stochastic weight averaging (SWA)
[Izmailov et al., 2018] in a RL context. SWA is a train-
ing technique based on averaging weights of the models
collected during training, which was shown to improve
generalization for both supervised and semi-supervised
[Athiwaratkun et al., 2018] learning.

We show that applying SWA to A2C and DDPG it is
possible to improve the solutions found by these meth-



ods and in particular alleviate the issue of forgetting the
highly rewarded policy (see Figure 1). Also, SWA can
substantially improve the average cumulative reward ob-
tained by an agent trained on several Atari and MuJoCo
environments.

2 BACKGROUND

In this section, we briefly describe stochastic weight av-
eraging (SWA), advantage actor-critic (A2C) and deep
deterministic policy gradient (DDPG) algorithms.

2.1 STOCHASTIC WEIGHT AVERAGING

SWA [Izmailov et al., 2018] is a recently proposed train-
ing technique that allows finding solutions with better
generalization in supervised and semi-supervised learn-
ing. SWA is based on averaging the weights collected
during training with an SGD-like method. In supervised
learning, the weights are collected at the end of each
training epoch. Izmailov et al. [2018] use a constant
or cyclical learning rate schedule to ensure that the op-
timization does not converge to a single solution and in-
stead continues to explore the region of high-performing
networks.

2.2 ADVANTAGE ACTOR-CRITIC AND DEEP
DETERMINISTIC POLICY GRADIENT

We consider a standard reinforcement learning setting
where an agent aims to maximize expected discounted
cumulative reward

J(π) = Eπ [R0] = Eπ

[ ∞∑
k=0

γkrk+1

]
, (1)

while starting in some initial state s0 ∼ p(s0),
sampling actions at ∼ π(at|st), receiving rewards
rt+1 ∼ p(rt+1|st, at) and observing new states st+1 ∼
p(st+1|st, at). Action-value function qπ(st, at) mea-
sures the value of state-action pair (st, at) following pol-
icy π, while value function vπ(st) measures the value of
state pair st following policy π:

qπ(st, at) = Eπ [Rt|st, at] = Eπ

[ ∞∑
k=0

γkrt+k+1|st, at

]
,

vπ(st) = Eπ [Rt|st] = Eπ

[ ∞∑
k=0

γkrt+k+1|st

]
.

Advantage actor-critic (A2C) [Barto et al., 1983, Mnih
et al., 2016] algorithm parametrizes policy by a neural

Algorithm 1 SWA

Require:
Initial weights ŵ, SWA update frequency c, number of
training steps n

Ensure: wSWA {SWA model}
w ← ŵ {Initialize weights with ŵ}
wSWA ← w
nSWA ← 1 {Number of weights in SWA average}
for i← 1, 2, . . . , n do
w ← Upd(w) {Perform optimization update}
if mod(i, c) = 0 then
wSWA ←

nSWA · wSWA + w

nSWA + 1
nSWA ← nSWA + 1

end if
end for

network (actor) and approximates the advantage func-
tion, the difference between action-value and value func-
tions, by another neural network (critic). The critic is
then used in an estimator of the gradient of the objective
(1) with respect to policy parameters. A2C is a model-
free algorithm, and is commonly used in environments
with discrete action spaces.

Deep deterministic policy gradient (DDPG) [Lillicrap
et al., 2015], similarly to A2C algorithm, uses actor and
critic networks, but is based on deterministic policy gra-
dient [Silver et al., 2014] which is applicable to environ-
ments with continuous action spaces.

We choose A2C and DDPG to show that SWA stabilizes
solutions and increases agent’s overall performance for
both discrete and continuous control tasks.

3 SWA FOR A2C AND DDPG

In order to apply SWA to A2C and DDPG algorithms,
we introduce frequency c of updating the SWA weights.
This is in contrast to supervised learning where the SWA
weights are usually updated in the end of every epoch.
We summarize the SWA procedure in algorithm 1. To
initialize the weights ŵ we use the weights of the model
that was trained for a fixed amount of steps with con-
ventional training. Then we apply SWA for the weights
of both actor and critic networks. Note that SWA model
has a separate set of weights which does not influence
the optimization process.

We demonstrate that SWA reduces the learning instabil-
ities caused by noisy gradient updates, resists forgetting
of highly rewarded policies and also increases the overall
agent’s performance.

The intuition behind applying SWA is that by averaging
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Figure 2: Average cumulative reward trajectories of A2C
for CartPole environment with and without SWA. Plots
are averaged over 5 runs, shaded region represents the
standard deviation

multiple samples from optimization trajectory we reduce
the effect of noise in the gradients, since noise in individ-
ual samples cancels out. In convex stochastic optimiza-
tion, similar averaging techniques for SGD are known to
deliver optimal convergence rates [Polyak and Juditsky,
1992, Rakhlin et al., 2012, Bach and Moulines, 2013].
Lakshminarayanan and Szepesvari [2018] show how av-
eraging could be applied to a linear value-function eval-
uation problem, yielding the optimal convergence rate
for TD(0) learning. This result appears promising for
establishing the connection between the stochastic opti-
mization theory and our findings, especially in the light
of policy gradient algorithms being the approximate ver-
sions of policy iteration, which, in turn, consists of in-
terleaved policy evaluation and policy improvement. We
view a theoretical exploration as a promising direction
for future work.

4 EXPERIMENTS

We evaluate SWA on the CartPole environment, 6 Atari
games and 4 MuJoCo environments. For CartPole, we
have implemented A2C with Generalized Advantage Es-
timation [Schulman et al., 2015b]. For Atari games, we
use OpenAI baselines’ [Dhariwal et al., 2017] implemen-
tation of A2C with default hyperparameters. For Mu-
JoCo environments, we also use OpenAI baselines im-
plementation of DDPG with default hyperparameters.

Figure 2 shows the average cumulative reward versus the
number of training steps for the usual training solution
and SWA. The usual A2C agent reaches the highest pos-
sible average reward of 200 during training, but the aver-
age reward deteriorates because of instability in training
(notice the high variance of the average reward over mul-
tiple runs). On the other hand, the SWA solution gradu-

ally increases average rewards and maintains the optimal
average reward of 200 once it reaches it. For CartPole,
we update SWA weights after every episode.

To further analyze the effect of SWA on A2C we apply it
to several Atari benchmark games. We first pretrain the
methods for 33M timesteps for Breakout and Qbert and
for 55M timesteps for other Atari games. We use smaller
number of training steps for Breakout and Qbert because
these environments are simpler. Then we continue train-
ing for the same amount of timesteps with and without
SWA. Here we set c to 100 updates, which corresponds
to 8000 timesteps for default hyperparameters in the im-
plementation of A2C. We report the results in Table 1.

Table 1: Average final cumulative reward for 6 games
for A2C and A2C + SWA solutions. The experiments
are repeated 3 times to estimate standard deviation.

ENV NAME A2C A2C + SWA

Breakout 522± 34 703± 60
Qbert 18777± 778 21272± 655
SpaceInvaders 7727± 1121 21676± 8897
Seaquest 1779± 4 1795± 4
CrazyClimber 147030± 10239 139752± 11618
BeamRider 9999± 402 11321± 1065

The performance increase due to SWA also holds for
DDPG applied to continous control tasks. For DDPG, we
set c = 2000 timesteps, which corresponds to 1 epoch of
training for default hyperparameters. Then, we pretrain
all agents for 1.4M steps and continue training with and
without SWA for 0.4M time steps. The results are re-
ported in Table 2.

Table 2: Average final cumulative reward for 4 MuJoCo
environments for DDPG and DDPG + SWA solutions.
The experiments are repeated 3 times to estimate the
standard deviation.

ENV NAME DDPG DDPG + SWA

Hopper 613± 683 1615± 1143
Walker2d 1803± 96 2457± 241
Half-Cheetah 3825± 1187 4228± 1117
Ant 865± 899 1051± 696

Note that for all tested environments except Crazy-
Climber SWA solution achieves higher average cumula-
tive reward.



5 DISCUSSION AND FUTURE WORK

In this paper, we have proposed to apply SWA to re-
inforcement learning problems. Our results on A2C
and DDPG suggest that the SWA solutions alleviate the
learning instabilities caused by presence of noise in gra-
dient estimators and attain higher average cumulative re-
ward on a range of problems.

Inspired by the results obtained, we plan to explore the
effect of SWA on other model-free RL algorithms such
as A3C, DQN, PPO and model-based algorithms. In ad-
dition, our work so far involves an offline use of SWA;
that is, the averaging does not affect the training proce-
dure. Modification of the training procedure based on
weight averaging can potentially help in stabilization and
training acceleration. For example, we can use the SWA
solutions to influence action selection or to calculate the
value function.

We see theoretical justification of weight averaging in RL
context as another promising research direction. In im-
age classification scenarios, Athiwaratkun et al. [2018]
found that applying SWA helps to improve the perfor-
mance due to the approximate convexity of the error sur-
face and proposed averaging the weights corresponding
to higher learning rates of a cyclical schedule. Similarly
to this finding, an analysis of the RL loss surface can re-
veal new approaches to weight averaging for improving
stability in reinforcement learning settings.
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