Improving Stability in Deep Reinforcement Learning with Weight Averaging

Evgenii Nikishin¹, Pavel Izmailov², Ben Athiwaratkun², Dmitrii Podoprikhin^{1,3} Timur Garipov⁴, Pavel Shvechikov¹, Dmitry Vetrov^{1,3}, Andrew Gordon Wilson²

¹National Research University Higher School of Economics, ²Cornell University ³Samsung-HSE Laboratory, ⁴Samsung AI Center in Moscow

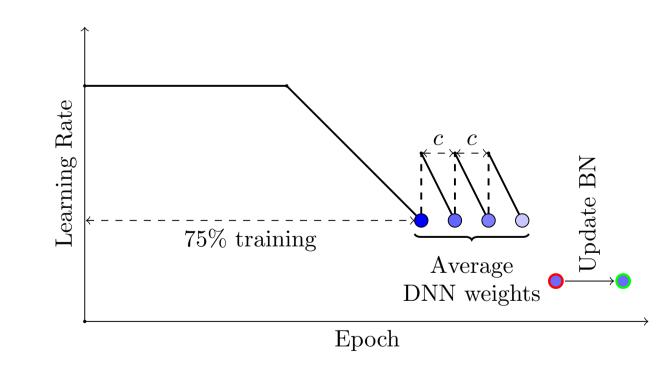
Outline

- Deep reinforcement learning (RL) methods are notoriously unstable during training
- Stochastic weight averaging (SWA) is a technique based on averaging the weights collected during training with an SGD-like method
- We propose to apply SWA, in order to reduce the effect of noise on training
- We show that SWA stabilizes solutions and improves the average rewards

Background

- Advantage Actor-Critic (A2C) is a standard RL algorithm, often applied to problems with discrete action spaces.
- Deep Deterministic Policy Gradient (DDPG) is another standard RL algorithm, but suitable for continuous action spaces.

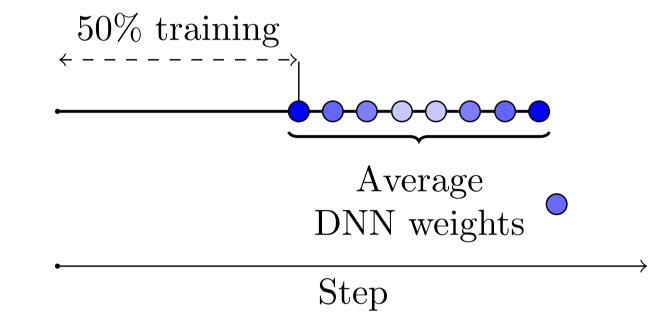
Stochastic weight averaging



- Use learning rate schedule that doesn't decay to zero, e.g. cyclical or high constant at the end of training
- ullet Average weights at the end of each of the last K epochs or at the end of each cycle

SWA for RL

SWA was shown to find solutions with better generalization in both supervised and semi-supervised learning. We introduce several modifications for RL:

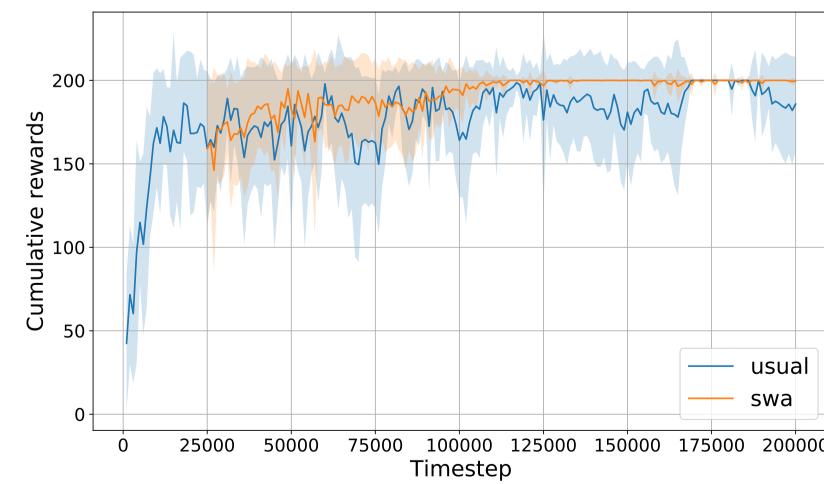


- Use constant learning rate
- Use adaptive optimizers (Adam, RMSProp)
- Collect weights once every c training steps after the initial pretraining stage

$$w_{\text{SWA}} \leftarrow \frac{n_{\text{SWA}} \cdot w_{\text{SWA}} + w}{n_{\text{SWA}} + 1}, \qquad n_{\text{SWA}} \leftarrow n_{\text{SWA}} + 1$$

Results

Average cumulative rewards of A2C for CartPole



- Even on simple tasks A2C forgets optimal policy
- SWA is able to stabilize performance

A2C on Atari environments

ENV NAME	A2C	A2C + SWA
Breakout	522 ± 34	703 ± 60
Qbert	18777 ± 778	21272 ± 655
SpaceInvaders	7727 ± 1121	21676 ± 8897
Seaquest	1779 ± 4	1795 ± 4
CrazyClimber	147030 ± 10239	139752 ± 11618
BeamRider	9999 ± 402	11321 ± 1065

DDPG on MuJoCo environments

ENV NAME	DDPG	DDPG + SWA
TT	C10 C00	1017 1110
Hopper	613 ± 683	1615 ± 1143
Walker2d	1803 ± 96	2457 ± 241
Half-Cheetah	3825 ± 1187	4228 ± 1117
Ant	865 ± 899	1051 ± 696

- We use OpenAI baselines' implementations of A2C and DDPG with default hyperparameters
- SWA achieves consistent improvement with both methods

Discussion

- In SWA averaging does not affect the training procedure; using SWA averages during training could stabilize convergence and accelerate training
- Theoretical justification for averaging in RL context