Improving Stability in Deep Reinforcement Learning with Weight Averaging

Evgenii Nikishin1, Pavel Izmailov2, Ben Athiwaratkun2, Dmitri Podoprikhin1,3
Timur Garipov4, Pavel Shvechikov1, Dmitry Vetrov1,3, Andrew Gordon Wilson2

1National Research University Higher School of Economics, 2Cornell University
3Samsung-HSE Laboratory, 4Samsung AI Center in Moscow

Outline

• Deep reinforcement learning (RL) methods are notoriously unstable during training
• Stochastic weight averaging (SWA) is a technique based on averaging the weights collected during training with an SGD-like method
• We propose to apply SWA, in order to reduce the effect of noise on training
• We show that SWA stabilizes solutions and improves the average rewards

Background

• Advantage Actor-Critic (A2C) is a standard RL algorithm, often applied to problems with discrete action spaces.
• Deep Deterministic Policy Gradient (DDPG) is another standard RL algorithm, but suitable for continuous action spaces.

Stochastic weight averaging

- Use learning rate schedule that doesn’t decay to zero, e.g. cyclical or high constant at the end of training
- Average weights at the end of each of the last K epochs or at the end of each cycle

SWA for RL

SWA was shown to find solutions with better generalization in both supervised and semi-supervised learning. We introduce several modifications for RL:

\[
\begin{align*}
\bar{w}_{n+1}^{\text{SWA}} & = \frac{n w_{n+1}^{\text{SWA}} + w_n}{n+1} \\
ns_{n+1}^{\text{SWA}} & = ns_n^{\text{SWA}} + 1
\end{align*}
\]

- Use constant learning rate
- Use adaptive optimizers (Adam, RMSProp)
- Collect weights once every c training steps after the initial pre-training stage

Results

Average cumulative rewards of A2C for CartPole

- Even on simple tasks A2C forgets optimal policy
- SWA is able to stabilize performance

Discussion

- In SWA averaging does not affect the training procedure; using SWA averages during training could stabilize convergence and accelerate training
- Theoretical justification for averaging in RL context

A2C on Atari environments

<table>
<thead>
<tr>
<th>ENV NAME</th>
<th>A2C</th>
<th>A2C + SWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakout</td>
<td>522 ± 34</td>
<td>703 ± 60</td>
</tr>
<tr>
<td>Qbert</td>
<td>18777 ± 778</td>
<td>21272 ± 655</td>
</tr>
<tr>
<td>SpaceInvaders</td>
<td>7727 ± 1121</td>
<td>21676 ± 8897</td>
</tr>
<tr>
<td>Seaguest</td>
<td>1779 ± 4</td>
<td>1795 ± 4</td>
</tr>
<tr>
<td>CrazyClimber</td>
<td>147030 ± 10239</td>
<td>139752 ± 11618</td>
</tr>
<tr>
<td>BeamRider</td>
<td>9999 ± 402</td>
<td>11321 ± 1065</td>
</tr>
</tbody>
</table>

DDPG on MuJoCo environments

<table>
<thead>
<tr>
<th>ENV NAME</th>
<th>DDPG</th>
<th>DDPG + SWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hopper</td>
<td>613 ± 683</td>
<td>1615 ± 1143</td>
</tr>
<tr>
<td>Walker2d</td>
<td>1803 ± 96</td>
<td>2457 ± 241</td>
</tr>
<tr>
<td>Half-Cheetah</td>
<td>3825 ± 1187</td>
<td>4228 ± 1117</td>
</tr>
<tr>
<td>Ant</td>
<td>865 ± 899</td>
<td>1051 ± 696</td>
</tr>
</tbody>
</table>

- We use OpenAI baselines’ implementations of A2C and DDPG with default hyperparameters
- SWA achieves consistent improvement with both methods