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Introduction

• We observe that for consistency-based methods, SGD does not con-
verge to a single point but continues to explore many solutions with
high distances apart.

• We propose to apply fast-SWA, a novel modification of Stochastic
Weight Averaging (SWA), to the Π and Mean Teacher models. fast-
SWA runs SGD with a cyclical learning rate schedule and averages
weights of multiple SGD iterates within each cycle.

• Applying weight averaging to the Π and Mean Teacher models we
improve the best reported results on multiple consequential bench-
marks.
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Consistency Enforcing methods

Consistency methods for SSL penalize change in network predictions
with respect to input perturbations x→ x′ like random translations and
horizontal flips with an additional loss term that can be computed on
unlabeled data.∑

(x,y)∈DL
`CE(x, y) + λ

∑
x∈DL∪DU

‖f (x)− f (x′)‖2

• For small additive normal perturbations, x′ = x + εz, z ∼ N (0, I),
we show that the consistency loss Q̂ = limε→0

1
ε2‖f (x)− f (x′)‖2 is an

unbiased estimator for the norm of the Jacobian of the network:

E[Q̂] = Ex[‖Jx‖2
F ] and Var[Q̂] = Var[‖Jx‖2

F ] + 2E[‖JTx Jx‖2
F ].
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• As measured by test error along rays from the solution parameters,
we find that the consistency enforcing methods, Π and Mean Teacher,
find minima which are less sharp than supervised only solutions.

• Optimizing the consistency loss, SGD continues to explore a diverse
set of candidate models late into training, both as measured by dis-
tance and the fraction of different predictions on unseen data.

Ensembling and Weight Averaging

• This additional diversity as a result of the consistency loss can be
converted into substantially greater performance through the ensem-
bling predictions and averaging weights of the networks at different
epochs in the training procedure.

• The improvement is much larger for the Π and Mean Teacher models
compared to supervised training.

• Averaging the weights instead of predictions yields comparable per-
formance, but major computational benefits for inference.
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Left: Scatter plot of the decrease in error Cavg for weight averaging versus distance.
Middle: Scatter plot of the decrease in error Cens for prediction ensembling versus
diversity. Right: Train error surface (orange) and Test error surface (blue). The SGD
solutions (red dots) around a locally flat minimum are far apart due to the flatness of
the train surface which leads to large error reduction of the SWA solution (blue dot).

Semi-Supervised Learning with fast-SWA

• For the first ` ≤ `0 epochs the network is pre-trained using the cosine
annealing schedule where the learning rate at epoch i is set equal
to After ` epochs, we use a cyclical schedule, repeating the learning
rates from epochs [`− c, `], where c is the cycle length.

• SWA collects the networks corresponding to the minimum values of
the learning rate and averages their weights. The model with the
averaged weights wSWA is then used to make predictions.
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Left: Cyclical cosine learning rate schedule and SWA and fast-SWA averaging strate-
gies. Middle: Illustration of the solutions explored by the cyclical cosine annealing
schedule on an error surface. Right: Illustration of SWA and fast-SWA averaging
strategies. fast-SWA averages more points but the errors of the averaged points, as
indicated by the heat color, are higher.

• fast-SWA is a novel modification of SWA that uses longer learning
rate cycles and averges weights more than once per cycle.

• We propose to apply SWA to the student network both for the Π and
Mean Teacher models. Note that the SWA weights do not interfere
with training.

Semi-Supervised Results

Table 1: Test errors against current state-of-the-art semi-supervised results.

Dataset CIFAR-10 CIFAR-100

No. of Images 50k 50k 50k 50k 50k+500k 50k+237k∗
No. of Labels 1k 2k 4k 10k 50k 50k

Previous Best CNN 18.414 13.644 9.222 38.653 23.623 23.793

Ours CNN 15.58 11.02 9.05 33.62 21.04 20.98

Previous Best† 6.281

Ours† 6.6 5.7 5.0‡ 28.0 19.3 17.7
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