There are Many Consistent Explanations of Unlabeled Data: Why You Should Average Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, Andrew Gordon Wilson

Cornell University

Introduction

- We observe that for consistency-based methods, SGD does not converge to a single point but continues to explore many solutions with high distances apart.
- We propose to apply fast-SWA, a novel modification of Stochastic Weight Averaging (SWA), to the Π and Mean Teacher models. fast-SWA runs SGD with a cyclical learning rate schedule and averages weights of multiple SGD iterates within each cycle.
- Applying weight averaging to the Π and Mean Teacher models we improve the best reported results on multiple consequential benchmarks.

Consistency Enforcing methods

Consistency methods for SSL penalize change in network predictions with respect to input perturbations $x \to x'$ like random translations and horizontal flips with an additional loss term that can be computed on unlabeled data.

$$\sum_{(x,y)\in\mathcal{D}_L} \ell_{CE}(x,y) + \lambda \sum_{(x\in\mathcal{D}_L\cup\mathcal{D}_U)} \|f(x) - f(x')\|^2$$

• For small additive normal perturbations, $x' = x + \epsilon z$, $z \sim \mathcal{N}(0, I)$, we show that the consistency loss $\hat{Q} = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} ||f(x) - f(x')||^2$ is an unbiased estimator for the norm of the Jacobian of the network:

 $\mathbb{E}[\hat{Q}] = \mathbb{E}_x[||J_x||_F^2]$ and $\operatorname{Var}[\hat{Q}] = \operatorname{Var}[||J_x||_F^2] + 2\mathbb{E}[||J_x^T J_x||_F^2].$

— MT CE

50100 (d)

- As measured by test error along rays from the solution parameters, we find that the consistency enforcing methods, Π and Mean Teacher, find minima which are less sharp than supervised only solutions.
- Optimizing the consistency loss, SGD continues to explore a diverse set of candidate models late into training, both as measured by distance and the fraction of different predictions on unseen data.

Ensembling and Weight Averaging

- This additional diversity as a result of the consistency loss can be converted into substantially greater performance through the ensembling predictions and averaging weights of the networks at different epochs in the training procedure.
- The improvement is much larger for the Π and Mean Teacher models compared to supervised training.
- Averaging the weights instead of predictions yields comparable performance, but major computational benefits for inference.

Left: Scatter plot of the decrease in error C_{avg} for weight averaging versus distance. **Middle**: Scatter plot of the decrease in error C_{ens} for prediction ensembling versus diversity. **Right**: Train error surface (orange) and Test error surface (blue). The SGD solutions (red dots) around a locally flat minimum are far apart due to the flatness of the train surface which leads to large error reduction of the SWA solution (blue dot).

Semi-Supervised Learning with fast-SWA

- For the first $\ell \leq \ell_0$ epochs the network is pre-trained using the cosine annealing schedule where the learning rate at epoch *i* is set equal to After ℓ epochs, we use a cyclical schedule, repeating the learning rates from epochs $[\ell - c, \ell]$, where c is the cycle length.
- SWA collects the networks corresponding to the minimum values of the learning rate and averages their weights. The model with the averaged weights w_{SWA} is then used to make predictions.

Left: Cyclical cosine learning rate schedule and SWA and fast-SWA averaging strategies. Middle: Illustration of the solutions explored by the cyclical cosine annealing schedule on an error surface. Right: Illustration of SWA and fast-SWA averaging strategies. fast-SWA averages more points but the errors of the averaged points, as indicated by the heat color, are higher.

- with training.

Semi-Supervised Results

Paper and code

• fast-SWA is a novel modification of SWA that uses longer learning rate cycles and averges weights more than once per cycle.

• We propose to apply SWA to the student network both for the Π and Mean Teacher models. Note that the SWA weights do not interfere

Table 1: Test errors against current state-of-the-art semi-supervised results.

	00	CIFAR-10				
	50k+237k*	50k+500k	50k	50k	50k	k
	50k	50k	TOK	4K	2ĸ	K
	23.79 ³	23.62^{3}	38.65 ³	9.22^{2}	13.64^4	1^{4}
	20.98	21.04	33.62	9.05	11.02	58
				6.28^{1}		
	17.7	19.3	28.0	5.0^{\ddagger}	5.7	6
00k Labels	CIFAR-100: MT 50k+5	CIFAR-100: MT 10k Labels				
26 25 24 23						
- A sha by a day of the share	a hard of a fact way a factor	22 - 21 -				
400 450	200 250 300 350 Epoch	150	400 450	00 350 Epoch	200 250 3	150
abels	(c) C100, 50k l		els), 10k lab	(b) C100	

(b) Code