Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition

Pavel Izmailov¹

Alexander Novikov^{2,3}

Dmitry Kropotov⁴

ション ふゆ く 山 マ チャット しょうくしゃ

¹Cornell University

²National Research University Higher School of Economics

³Institute of Numerical Mathematics RAS

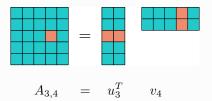
⁴Lomonosov Moscow State University

April 10, 2018

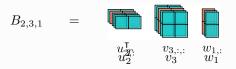
Tensor Train Decomposition [Oseledets 2011]

Generalizes low rank approximation

Low-Rank



Tensor Train



- Doesn't suffer from curse of dimensionality
- ► Allows fast implementation of linear algebra operations

ML Applications of TT

- TensorNet: DNN compression
 - ▶ Feed Forward [Novikov et al. 2015]
 - Convolutional [Garipov et al. 2016]
 - Recurrent [Yu et al. 2018]
- Markov Random Fields [Novikov et al. 2014]
- ▶ Theoretical analysis of RNN expressive power [Khrulkov et al. 2018]

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Discrete VAE [coming soon]

ML Applications of TT

- TensorNet: DNN compression
 - Feed Forward [Novikov et al. 2015]
 - Convolutional [Garipov et al. 2016]
 - Recurrent [Yu et al. 2018]
- Markov Random Fields [Novikov et al. 2014]
- ▶ Theoretical analysis of RNN expressive power [Khrulkov et al. 2018]

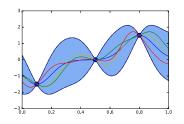
・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- Discrete VAE [coming soon]
- ► TT-GP Scalable GP framework

Gaussian Processes

Definition

Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.



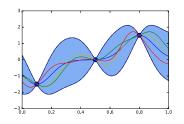
Posterior distribution of a one-dimensional Gaussian process

▲ロト ▲帰下 ▲ヨト ▲ヨト ヨー のくぐ

Gaussian Processes

Definition

Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.



Posterior distribution of a one-dimensional Gaussian process

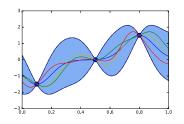
In Machine Learning GPs

- Allow automatic tunning of model complexity (non-parametric model)
- Provide principled uncertainty estimates
- Can discover complex non-linear patterns in data

Gaussian Processes

Definition

Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

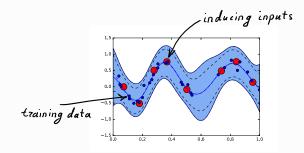


Posterior distribution of a one-dimensional Gaussian process

In Machine Learning GPs

- Allow automatic tunning of model complexity (non-parametric model)
- Provide principled uncertainty estimates
- Can discover complex non-linear patterns in data
- Exact inference is $\mathcal{O}(n^3)$

Inducing Inputs



Approximate posterior distribution based on inducing inputs

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- Auxiliary observations that approximate the data
- Allow fast approximate inference

Previous Methods

► Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require O(nm² + m³) computations, m is the number of inducing points

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Applicable for large n (e.g. 10^6)
- Infeasible for large $m \gg 10^3$

Previous Methods

- ► Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require O(nm² + m³) computations, m is the number of inducing points
 - Applicable for large n (e.g. 10^6)
 - Infeasible for large $m \gg 10^3$
- ▶ KISS-GP [Wilson and Nickisch 2015] leverages the structure in the covariance matrices; requires $O(n + m \log m)$ computations, $m = m_0^D$ and D is the number of features

ション ふゆ く 山 マ チャット しょうくしゃ

- Applicable for large n (e.g. 10^6) and m (e.g. 10^4)
- Infeasible for large $D \gg 4$

Previous Methods

- ► Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require O(nm² + m³) computations, m is the number of inducing points
 - Applicable for large n (e.g. 10^6)
 - Infeasible for large $m \gg 10^3$
- ▶ KISS-GP [Wilson and Nickisch 2015] leverages the structure in the covariance matrices; requires $O(n + m \log m)$ computations, $m = m_0^D$ and D is the number of features
 - Applicable for large n (e.g. 10^6) and m (e.g. 10^4)
 - Infeasible for large $D \gg 4$
- Tensor Train GP (TT-GP) extends KISS-GP to high-dimensional problems
 - Applicable for large n (e.g. 10^6) and m (e.g. 10^8)
 - ▶ Applicable for larger D (e.g. 10)

ELBO [Hensman et al. 2013]

Evidence Lower Bound (ELBO) for GP regression:

$$\begin{split} \log p(y) &\geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | k_i^T K_{mm}^{-1} \mu, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \operatorname{tr}(k_i^T K_{mm}^{-1} \Sigma K_{mm}^{-1} k_i) \right) \right) - \\ & \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \operatorname{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right) \to \max_{\mu, \Sigma, \theta, \sigma} \end{split}$$

where

- $K_{mm} \in \mathbb{R}^{m \times m}$ is the covariance matrix computed at the inducing points
- ▶ $k_i \in \mathbb{R}^m$ is the vector of covariances between the *i*-th training object and the inducing points
- σ^2 is the noise variance
- $\mu \in \mathbb{R}^m$, $\Sigma \in \mathbb{R}^{m \times m}$ variational parameters
- $\tilde{K}_{ii}=\delta^2-k_i^TK_{mm}^{-1}k_i$, where δ^2 is the prior variance of the process at any point

• θ represents kernel hyper-parameters

Assume m is very large (e.g. 10^{10})

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | k_i^T K_{mm}^{-1} \mu, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \operatorname{tr}(k_i^T K_{mm}^{-1} \Sigma K_{mm}^{-1} k_i) \right) \right) - \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \operatorname{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

ELBO + KISS-GP [Wilson and Nickisch 2015]

Assume m is very large (e.g. 10^{10})

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | \boldsymbol{w}_i^T \boldsymbol{\mu}, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \mathsf{tr}(\boldsymbol{w}_i^T \boldsymbol{\Sigma} \boldsymbol{w}_i) \right) \right)$$
$$-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\boldsymbol{\Sigma}|} - m + \mathsf{tr}(K_{mm}^{-1}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^T K_{mm}^{-1} \boldsymbol{\mu} \right)$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Set inducing points on a grid
- Assume product kernel
- K_{mm} is in Kronecker product format
- $k_i \approx K_{mm} w_i$, w_i in Kronecker product format

TT-GP (Our Method)

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | \boldsymbol{w}_i^T \boldsymbol{\mu}, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \mathsf{tr}(\boldsymbol{w}_i^T \boldsymbol{\Sigma} \boldsymbol{w}_i) \right) \right)$$
$$-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\boldsymbol{\Sigma}|} - m + \mathsf{tr}(K_{mm}^{-1} \boldsymbol{\Sigma}) + \boldsymbol{\mu}^T K_{mm}^{-1} \boldsymbol{\mu} \right)$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Restrict the format of variational parameters:

TT-GP (Our Method)

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | \boldsymbol{w}_i^T \boldsymbol{\mu}, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \operatorname{tr}(\boldsymbol{w}_i^T \boldsymbol{\Sigma} \boldsymbol{w}_i) \right) \right)$$
$$-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\boldsymbol{\Sigma}|} - m + \operatorname{tr}(K_{mm}^{-1} \boldsymbol{\Sigma}) + \boldsymbol{\mu}^T K_{mm}^{-1} \boldsymbol{\mu} \right)$$

Restrict the format of variational parameters:

• Σ in Kronecker product format

$$\Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TT-GP (Our Method)

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \operatorname{tr}(w_i^T \Sigma w_i) \right) \right)$$
$$-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \operatorname{tr}(K_{mm}^{-1}\Sigma) + \mu^T K_{mm}^{-1} \mu \right)$$

Restrict the format of variational parameters:

• Σ in Kronecker product format

$$\Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D$$

ション ふゆ アメリア メリア しょうくしゃ

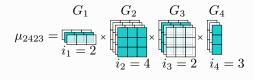
• μ in TT format

• μ naturally reshapes to a tensor

Tensor Train format [Oseledets 2011]

Tensor μ is said to be represented in TT format if:

$$\mu(i_1,\ldots,i_D) = \underbrace{G_1[i_1]}_{1 \times r} \underbrace{G_2[i_2]}_{r \times r} \cdots \underbrace{G_D[i_D]}_{r \times 1}, \quad i_k \in \{1,\ldots,m_0\}$$



 $G_k - \mathsf{TT} ext{-cores}, \qquad r - \mathsf{TT} ext{-rank}$

▶ TT-format uses $\mathcal{O}\left(Dm_0r^2\right)$ memory to approximate a tensor with m_0^D elements

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Allows efficient implementation of linear algebra operations
- Generalizes Kronecker product format (r = 1)

TT-GP method

▶ Set inducing points Z on a grid in the feature space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \blacktriangleright Σ in Kronecker product format, μ in TT format
- Maximize the ELBO wrt to
 - ▶ TT-cores of μ
 - Kronecker factors of Σ
 - kernel hyper-parameters

Properties of TT-GP

Computational complexity

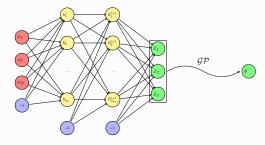
$$\mathcal{O}(nDm^{1/D}r^2 + Dm^{1/D}r^3 + Dm^{3/D});$$

ション ふゆ アメリア メリア しょうくしゃ

 $m = m_0^D$, TT-ranks are on the scale of $r \approx 10$;

- \blacktriangleright In the experiments we use up to $n\approx 10^6,\,m\approx 10^{10}$
- Computationally tractable for large D
 - For D >> 10 more practical to train embedding

Deep Kernel Embedding [Wilson et al. 2016]



Given base kernel k, e.g. RBF

$$k(x, x') = \alpha^2 \cdot \exp(-\|x - x'\|^2 / \beta^2),$$

define deep kernel as

$$k_{\mathsf{net}}(x, x') = k(\mathsf{net}(x), \mathsf{net}(x')),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

where k is the base kernel, net is a mapping performed by a DNN.

- DNN weights \rightarrow kernel hyperparameters
- Train as before

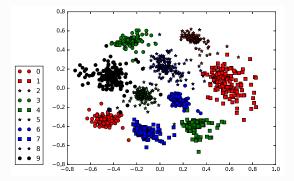
Experiments: RBF kernel

Dataset			SVI-GF	SVI-GP / KLSP-GP			TT-GP (Ours)			
Name	n	D	acc.	m	t (s)	acc.	m	d	t (s)	
Powerplant	7654	4	0.94	200	10	0.95	35^{4}	-	5	
Protein	36584	9	0.50	200	45	0.56	30^{9}	-	40	
YearPred	463K	90	0.30	1000	597	0.32	10^{6}	6	105	
Airline	6M	8	0.665^{*}	-	-	0.694	20^{8}	-	5200	
svmguide1	3089	4	0.967	200	4	0.969	20^{4}	-	1	
EEG	11984	14	0.915	1000	18	0.908	12^{10}	10	10	
covtype bin	465K	54	0.817	1000	320	0.852	10^{6}	6	172	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

- ▶ SVI-GP [Hensman et al. 2013]
- ▶ KLSP-GP [Hensman et al. 2015]

Experiments: Deep Kernel Embedding



Learned representation for the Digits dataset, n = 1797, D = 64

• • • • • • • • • • • •

∋) ∋

Experiments: Deep kernels

Dataset		SV-DKL	DNN		TT-GP			
Name	n	acc.	acc.	t (s)	acc.	d	t (s)	
Airline CIFAR-10 MNIST	$6M \\ 50K \\ 60K$	0.781 	0.780 0.915 0.993	$1055 \\ 166 \\ 23$	$\begin{array}{c} \textbf{0.788} \pm \textbf{0.002} \\ 0.908 \pm 0.003 \\ \textbf{0.9936} \pm \textbf{0.0004} \end{array}$	$ \begin{array}{c} 2 \\ 9 \\ 10 \end{array} $	$1375 \\ 220 \\ 64$	

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

▶ SV-DKL — [Wilson et al. 2016]

Discussion

TT-GP

 Uses Tensor Train decomposition and Kronecker format for variational parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Scales to large n, m, D
- Naturally allows training deep kernels

Discussion

TT-GP

 Uses Tensor Train decomposition and Kronecker format for variational parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Scales to large n, m, D
- Naturally allows training deep kernels
- Tends to overestimate uncertanties