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Tensor Train Decomposition [Oseledets 2011]
I Generalizes low rank approximation

Low-Rank

=

A3,4 = uT
3 v4

Tensor Train
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v3,:,:
uT

2 v3 w1

I Doesn’t suffer from curse of dimensionality
I Allows fast implementation of linear algebra operations



ML Applications of TT

I TensorNet: DNN compression
I Feed Forward [Novikov et al. 2015]
I Convolutional [Garipov et al. 2016]
I Recurrent [Yu et al. 2018]

I Markov Random Fields [Novikov et al. 2014]

I Theoretical analysis of RNN expressive power [Khrulkov et al. 2018]

I Discrete VAE [coming soon]

I TT-GP – Scalable GP framework
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Gaussian Processes

Definition
Gaussian process is a collection of random variables, any finite number of
which have joint Gaussian distribution.

Posterior distribution of a one-dimensional Gaussian process

In Machine Learning GPs
I Allow automatic tunning of model complexity (non-parametric model)
I Provide principled uncertainty estimates
I Can discover complex non-linear patterns in data
I Exact inference is O(n3)
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Inducing Inputs

Approximate posterior distribution based on inducing inputs

I Auxiliary observations that approximate the data
I Allow fast approximate inference

µ
inducing Inputs

⇐
 dining data



Previous Methods

I Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009,
Hensman et al. 2013] require O(nm2 + m3) computations, m is the
number of inducing points

I Applicable for large n (e.g. 106)
I Infeasible for large m � 103

I KISS-GP [Wilson and Nickisch 2015] leverages the structure in the
covariance matrices; requires O(n + m log m) computations, m = mD

0
and D is the number of features

I Applicable for large n (e.g. 106) and m (e.g. 104)
I Infeasible for large D � 4

I Tensor Train GP (TT-GP) extends KISS-GP to high-dimensional
problems

I Applicable for large n (e.g. 106) and m (e.g. 108)
I Applicable for larger D (e.g. 10)
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ELBO [Hensman et al. 2013]
Evidence Lower Bound (ELBO) for GP regression:
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where
I Kmm 2 Rm⇥m is the covariance matrix computed at the inducing

points
I ki 2 Rm is the vector of covariances between the i-th training object

and the inducing points
I �2 is the noise variance
I µ 2 Rm, ⌃ 2 Rm⇥m � variational parameters
I K̃ii = �2

� kT
i K�1

mmki, where �2 is the prior variance of the process at
any point

I ✓ represents kernel hyper-parameters



ELBO

Assume m is very large (e.g. 1010)
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ELBO + KISS-GP [Wilson and Nickisch 2015]

Assume m is very large (e.g. 1010)
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I Set inducing points on a grid
I Assume product kernel
I Kmm is in Kronecker product format
I ki ⇡ Kmmwi, wi in Kronecker product format



TT-GP (Our Method)
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⌦ . . . ⌦ ⌃D

I µ in TT format
I µ naturally reshapes to a tensor
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Тensor Train format [Oseledets 2011]
Tensor µ is said to be represented in TT format if:

µ(i1, . . . , iD) = G1[i1]| {z }
1⇥r

G2[i2]| {z }
r⇥r

· · ·GD[iD]| {z }
r⇥1

, ik 2 {1, . . . , m0}

µ2423 =

G1 G2 G3 G4

i2 = 4 i3 = 2 i4 = 3
i1 = 2

Gk � TT-cores, r � TT-rank

I TT-format uses O
�
Dm0r2

�
memory to approximate a tensor with

mD
0 elements

I Allows efficient implementation of linear algebra operations
I Generalizes Kronecker product format (r = 1)



TT-GP method

I Set inducing points Z on a grid in the feature space.

I ⌃ in Kronecker product format, µ in TT format

I Maximize the ELBO wrt to
I TT-cores of µ
I Kronecker factors of ⌃
I kernel hyper-parameters



Properties of TT-GP

I Computational complexity

O(nDm1/Dr2 + Dm1/Dr3 + Dm3/D);

m = mD
0 , TT-ranks are on the scale of r ⇡ 10;

I In the experiments we use up to n ⇡ 106, m ⇡ 1010

I Computationally tractable for large D
I For D >> 10 more practical to train embedding



Deep Kernel Embedding [Wilson et al. 2016]
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Given base kernel k, e.g. RBF

k(x, x0) = ↵2
· exp(�kx � x0

k
2/�2),

define deep kernel as

knet(x, x0) = k(net(x), net(x0)),

where k is the base kernel, net is a mapping performed by a DNN.
I DNN weights ! kernel hyperparameters
I Train as before



Experiments: RBF kernel

Dataset SVI-GP / KLSP-GP TT-GP (Ours)

Name n D acc. m t (s) acc. m d t (s)

Powerplant 7654 4 0.94 200 10 0.95 354 - 5
Protein 36584 9 0.50 200 45 0.56 309 - 40
YearPred 463K 90 0.30 1000 597 0.32 106 6 105

Airline 6M 8 0.665⇤ - - 0.694 208 - 5200
svmguide1 3089 4 0.967 200 4 0.969 204 - 1
EEG 11984 14 0.915 1000 18 0.908 1210 10 10
covtype bin 465K 54 0.817 1000 320 0.852 106 6 172

I SVI-GP – [Hensman et al. 2013]
I KLSP-GP – [Hensman et al. 2015]



Experiments: Deep Kernel Embedding

Learned representation for the Digits dataset, n = 1797, D = 64



Experiments: Deep kernels

Dataset SV-DKL DNN TT-GP

Name n acc. acc. t (s) acc. d t (s)

Airline 6M 0.781 0.780 1055 0.788± 0.002 2 1375
CIFAR-10 50K � 0.915 166 0.908 ± 0.003 9 220
MNIST 60K � 0.993 23 0.9936± 0.0004 10 64

I SV-DKL � [Wilson et al. 2016]



Discussion

TT-GP

I Uses Tensor Train decomposition and Kronecker format for variational
parameters

I Scales to large n, m, D

I Naturally allows training deep kernels

I Tends to overestimate uncertanties
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